Non-sensory inputs to angular path integration.
نویسندگان
چکیده
Non-sensory (cognitive) inputs can play a powerful role in monitoring one's self-motion. Previously, we showed that access to spatial memory dramatically increases response precision in an angular self-motion updating task [1]. Here, we examined whether spatial memory also enhances a particular type of self-motion updating - angular path integration. "Angular path integration" refers to the ability to maintain an estimate of self-location after a rotational displacement by integrating internally-generated (idiothetic) self-motion signals over time. It was hypothesized that remembered spatial frameworks derived from vision and spatial language should facilitate angular path integration by decreasing the uncertainty of self-location estimates. To test this we implemented a whole-body rotation paradigm with passive, non-visual body rotations (ranging 40 degrees -140 degrees ) administered about the yaw axis. Prior to the rotations, visual previews (Experiment 1) and verbal descriptions (Experiment 2) of the surrounding environment were given to participants. Perceived angular displacement was assessed by open-loop pointing to the origin (0 degrees ). We found that within-subject response precision significantly increased when participants were provided a spatial context prior to whole-body rotations. The present study goes beyond our previous findings by first establishing that memory of the environment enhances the processing of idiothetic self-motion signals. Moreover, we show that knowledge of one's immediate environment, whether gained from direct visual perception or from indirect experience (i.e., spatial language), facilitates the integration of incoming self-motion signals.
منابع مشابه
How environment and self-motion combine in neural representations of space.
Estimates of location or orientation can be constructed solely from sensory information representing environmental cues. In unfamiliar or sensory-poor environments, these estimates can also be maintained and updated by integrating self-motion information. However, the accumulation of error dictates that updated representations of heading direction and location become progressively less reliable...
متن کاملPath integration: effect of curved path complexity and sensory system on blindfolded walking.
Path integration refers to the ability to integrate continuous information of the direction and distance traveled by the system relative to the origin. Previous studies have investigated path integration through blindfolded walking along simple paths such as straight line and triangles. However, limited knowledge exists regarding the role of path complexity in path integration. Moreover, little...
متن کاملThe Comparison efficiency of Pivotal Response treatment (PRT) and Sensory Integration (SI) to reduce unusual quality of social interactions, unusual quality of communication and self-stimulatory behaviors in Autistic children
Background: This study was conducted to compare the effect of Pivotal Response treatment and sensory integration treatment in reducing the symptoms of male autistic children, including abnormal quality of social interactions, abnormal quality of communication and self-stimulatory behaviors. Methods: The clinical trial study was done on 36 boys with autism between 8-12 years’ old in pediatric re...
متن کاملNeural mechanisms for illusory filling-in of degraded speech
The brain uses context and prior knowledge to repair degraded sensory inputs and improve perception. For example, listeners hear speech continuing uninterrupted through brief noises, even if the speech signal is artificially removed from the noisy epochs. In a functional MRI study, we show that this temporal filling-in process is based on two dissociable neural mechanisms: the subjective experi...
متن کاملSensory Updates to Combat Path-Integration Drift
Even without sensory input, an animal can estimate how far it hasmovedby integrating its velocity, a process called path integration. The entorhinal cortex (EC) and hippocampus seem to be involved in path integration, and in an animal’s perceived location in space. However, path integration is highly susceptible to accumulating errors. A real animal avoids this problem by incorporating sensory ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of vestibular research : equilibrium & orientation
دوره 19 3-4 شماره
صفحات -
تاریخ انتشار 2009