Single-Document Keyphrase Extraction for Multi-Document Keyphrase Extraction

نویسنده

  • Gábor Berend
چکیده

Here, we address the task of assigning relevant terms to thematically and semantically related sub-corpora and achieve superior results compared to the baseline performance. Our results suggest that more reliable sets of keyphrases can be assigned to the semantically and thematically related subsets of some corpora if the automatically determined sets of keyphrases for the individual documents of an entire corpus are identified first. The sets of keyphrases assigned by our proposed method for the workshops present in the ACL Anthology Corpus over a 6-year period were considered better in more than 60% of the test cases compared to our baseline system when evaluated against an aggregation of different human judgements.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

روش جدید متن‌کاوی برای استخراج اطلاعات زمینه کاربر به‌منظور بهبود رتبه‌بندی نتایج موتور جستجو

Today, the importance of text processing and its usages is well known among researchers and students. The amount of textual, documental materials increase day by day. So we need useful ways to save them and retrieve information from these materials. For example, search engines such as Google, Yahoo, Bing and etc. need to read so many web documents and retrieve the most similar ones to the user ...

متن کامل

CollabRank: Towards a Collaborative Approach to Single-Document Keyphrase Extraction

Previous methods usually conduct the keyphrase extraction task for single documents separately without interactions for each document, under the assumption that the documents are considered independent of each other. This paper proposes a novel approach named CollabRank to collaborative single-document keyphrase extraction by making use of mutual influences of multiple documents within a cluste...

متن کامل

Keyphrase Extraction and Grouping Based on Association Rules

Keyphrases are important in capturing the content of a document and thus useful for many natural language processing tasks such as Information Retrieval, Document Classification, and Text Summarization. Keyphrase extraction aims to identify multi-word sequences from a collection of documents that more or less correspond to keyphrases. In this paper, we propose a new method for keyphrase extract...

متن کامل

State of the Art of Automatic Keyphrase Extraction Methods (État de l'art des méthodes d'extraction automatique de termes-clés) [in French]

State of the Art of Automatic Keyphrase Extraction Methods This article presents the state of the art of the automatic keyphrase extraction methods. The aim of the automatic keyphrase extraction task is to extract the most representative terms of a document. Automatic keyphrase extraction methods can be divided into two categories : supervised methods and unsupervised methods. For supervised me...

متن کامل

Single Document Keyphrase Extraction Using Neighborhood Knowledge

Existing methods for single document keyphrase extraction usually make use of only the information contained in the specified document. This paper proposes to use a small number of nearest neighbor documents to provide more knowledge to improve single document keyphrase extraction. A specified document is expanded to a small document set by adding a few neighbor documents close to the document,...

متن کامل

Keyphrase Annotation with Graph Co-Ranking

Keyphrase annotation is the task of identifying textual units that represent the main content of a document. Keyphrase annotation is either carried out by extracting the most important phrases from a document, keyphrase extraction, or by assigning entries from a controlled domain-specific vocabulary, keyphrase assignment. Assignment methods are generally more reliable. They provide better-forme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015