Feature selection by analyzing class regions approximated by ellipsoids

نویسندگان

  • Shigeo Abe
  • Ruck Thawonmas
  • Yoshiki Kobayashi
چکیده

In our previous work, we have developed a method for selecting features based on the analysis of class regions approximated by hyperboxes. In this paper, we select features analyzing class regions approximated by ellipsoids. First, for a given set of features, each class region is approximated by an ellipsoid with the center and the covariance matrix calculated by the data belonging to the class. Then, similar to our previous work, the exception ratio is defined to represent the degree of overlaps in the class regions approximated by ellipsoids. From the given set of features, we temporally delete each feature, one at a time, and calculate the exception ratio. Then, the feature whose associated exception ratio is the minimum is deleted permanently. We iterate this procedure while the exception ratio or its increase is within a specified value by feature deletion. The simulation results show that our current method is better than the principal component analysis (PCA) and performs better than our previous method, especially when the distributions of class data are not parallel to the feature axes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast Feature Selection by Analyzing Class Regions Approximated by Ellipsoids

In our previous work, we have developed the backward feature selection method based on class regions approximated by ellipsoids. In this paper, we accelerate feature selection by the forward selection search, the symmetric Cholesky factorization, and deletion of duplicated calculations between consecutive factorizations. The feature selection for two data sets shows that our method is faster th...

متن کامل

A New Framework for Distributed Multivariate Feature Selection

Feature selection is considered as an important issue in classification domain. Selecting a good feature through maximum relevance criterion to class label and minimum redundancy among features affect improving the classification accuracy. However, most current feature selection algorithms just work with the centralized methods. In this paper, we suggest a distributed version of the mRMR featu...

متن کامل

Energy Detection of Unknown Signals over Composite multipath/shadowing Fading Channels

In this paper, the performance analysis of an energy detector is exploited over composite multipath/shadowing fading channels, which is modeled by Rayleigh-lognormal (RL) distribution. Based on an approximate channel model which was recently proposed by the author, the RL envelope probability density function (pdf) is approximated by a finite sum of weighted Rayleigh pdfs. Relying on this inter...

متن کامل

Feature Selection Using Multi Objective Genetic Algorithm with Support Vector Machine

Different approaches have been proposed for feature selection to obtain suitable features subset among all features. These methods search feature space for feature subsets which satisfies some criteria or optimizes several objective functions. The objective functions are divided into two main groups: filter and wrapper methods.  In filter methods, features subsets are selected due to some measu...

متن کامل

A Novel Approach to Feature Selection Using PageRank algorithm for Web Page Classification

In this paper, a novel filter-based approach is proposed using the PageRank algorithm to select the optimal subset of features as well as to compute their weights for web page classification. To evaluate the proposed approach multiple experiments are performed using accuracy score as the main criterion on four different datasets, namely WebKB, Reuters-R8, Reuters-R52, and 20NewsGroups. By analy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE Trans. Systems, Man, and Cybernetics, Part C

دوره 28  شماره 

صفحات  -

تاریخ انتشار 1998