Co-training for Predicting Emotions with Spoken Dialogue Data

نویسندگان

  • Beatriz Maeireizo
  • Diane J. Litman
  • Rebecca Hwa
چکیده

Natural Language Processing applications often require large amounts of annotated training data, which are expensive to obtain. In this paper we investigate the applicability of Co-training to train classifiers that predict emotions in spoken dialogues. In order to do so, we have first applied the wrapper approach with Forward Selection and Naïve Bayes, to reduce the dimensionality of our feature set. Our results show that Co-training can be highly effective when a good set of features are chosen.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On-Line Learning of a Persian Spoken Dialogue System Using Real Training Data

The first spoken dialogue system developed for the Persian language is introduced. This is a ticket reservation system with Persian ASR and NLU modules. The focus of the paper is on learning the dialogue management module. In this work, real on-line training data are used during the learning process. For on-line learning, the effect of the variations of discount factor (g) on the learning speed...

متن کامل

On-Line Learning of a Persian Spoken Dialogue System Using Real Training Data

The first spoken dialogue system developed for the Persian language is introduced. This is a ticket reservation system with Persian ASR and NLU modules. The focus of the paper is on learning the dialogue management module. In this work, real on-line training data are used during the learning process. For on-line learning, the effect of the variations of discount factor (g) on the learning speed...

متن کامل

Predicting Emotion in Spoken Dialogue from Multiple Knowledge Sources

We examine the utility of multiple types of turn-level and contextual linguistic features for automatically predicting student emotions in human-human spoken tutoring dialogues. We first annotate student turns in our corpus for negative, neutral and positive emotions. We then automatically extract features representing acoustic-prosodic and other linguistic information from the speech signal an...

متن کامل

Cross-lingual spoken language understanding from unaligned data using discriminative classification models and machine translation

This paper investigates several approaches to bootstrapping a new spoken language understanding (SLU) component in a target language given a large dataset of semantically-annotated utterances in some other source language. The aim is to reduce the cost associated with porting a spoken dialogue system from one language to another by minimising the amount of data required in the target language. ...

متن کامل

Predicting how it sounds: re-ranking dialogue prompts based on TTS quality for adaptive spoken dialogue systems

This paper presents a method for adaptively re-ranking paraphrases in a Spoken Dialogue System (SDS) according to their predicted Text To Speech (TTS) quality. We collect data under 4 different conditions and extract a rich feature set of 55 TTS runtime features. We build predictive models of user ratings using linear regression with latent variables. We then show that these models transfer to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004