Conditioning Graphs: Practical Structures for Inference in Bayesian Networks

نویسندگان

  • Kevin Grant
  • Michael C. Horsch
چکیده

Probability is a useful tool for reasoning when faced with uncertainty. Bayesian networks offer a compact representation of a probabilistic problem, exploiting independence amongst variables that allows a factorization of the joint probability into much smaller local probability distributions. The standard approach to probabilistic inference in Bayesian networks is to compile the graph into a join-tree, and perform computation over this secondary structure. While join-trees are among the most time-efficient methods of inference in Bayesian networks, they are not always appropriate for certain applications. The memory requirements of join-tree can be prohibitively large. The algorithms for computing over join-trees are large and involved, making them difficult to port to other systems or be understood by general programmers without Bayesian network expertise. This thesis proposes a different method for probabilistic inference in Bayesian networks. We present a data structure called a conditioning graph, which is a runtime representation of Bayesian network inference. The structure mitigates many of the problems of join-tree inference. For example, conditioning graphs require much less space to store and compute over. The algorithm for calculating probabilities from a conditioning graph is small and basic, making it portable to virtually any architecture. And the details of Bayesian network inference are compiled away during the construction of the conditioning graph, leaving an intuitive structure that is easy to understand and implement without any Bayesian network expertise. In addition to the conditioning graph architecture, we present several improvements to the model, that maintain its small and simplistic style while reducing the runtime required for computing over it. We present two heuristics for choosing variable orderings that result in shallower elimination trees, reducing the overall complexity of computing over conditioning graphs. We also demonstrate several compile

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Introduction to Inference and Learning in Bayesian Networks

Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...

متن کامل

A combination of exact algorithms for inference on Bayesian belief networks

Cutset conditioning and clique-tree propagation are two popular methods for exact probabilistic inference in Bayesian belief networks. Cutset conditioning is based on decomposition of a subset of network nodes, whereas clique-tree propagation depends on aggregation of nodes. We characterize network structures in which the performances of these methods differ. We describe a means to combine cuts...

متن کامل

Modeling and Reasoning with Bayesian Networks

This book provides a thorough introduction to the formal foundations and practical applications of Bayesian networks. It provides an extensive discussion of techniques for building Bayesian networks that model real-world situations, including techniques for synthesizing models from design, learning models from data, and debugging models using sensitivity analysis. It also treats exact and appro...

متن کامل

Methods for Constructing Balanced Elimination Trees and Other Recursive Decompositions

A conditioning graph is a form of recursive factorization which minimizes the memory requirements and simplifies the implementation of inference in Bayesian networks. The time complexity for inference in conditioning graphs has been shown to be O(n exp(d)), where d is the depth of the underlying elimination tree. We demonstrate in this paper techniques for building small elimination trees. We g...

متن کامل

A Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf

Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation  method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005