Adaptive Learning of Smoothing Functions: Application to Electricity Load Forecasting

نویسندگان

  • Amadou Ba
  • Mathieu Sinn
  • Yannig Goude
  • Pascal Pompey
چکیده

This paper proposes an efficient online learning algorithm to track the smoothing functions of Additive Models. The key idea is to combine the linear representation of Additive Models with a Recursive Least Squares (RLS) filter. In order to quickly track changes in the model and put more weight on recent data, the RLS filter uses a forgetting factor which exponentially weights down observations by the order of their arrival. The tracking behaviour is further enhanced by using an adaptive forgetting factor which is updated based on the gradient of the a priori errors. Using results from Lyapunov stability theory, upper bounds for the learning rate are analyzed. The proposed algorithm is applied to 5 years of electricity load data provided by the French utility company Electricité de France (EDF). Compared to state-of-the-art methods, it achieves a superior performance in terms of model tracking and prediction accuracy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hourly Electricity Load Forecasting: An Empirical Application to the Italian Railways

Due to the liberalization of countless electricity markets, load forecasting has become crucial to all public utilities for which electricity is a strategic variable. With the goal of contributing to the forecasting process inside public utilities, this paper addresses the issue of applying the Holt-Winters exponential smoothing technique and the time series analysis for forecasting the hourly ...

متن کامل

Electricity Load Forecasting by Combining Adaptive Neuro-fuzzy Inference System and Seasonal Auto-Regressive Integrated Moving Average

Nowadays, electricity load forecasting, as one of the most important areas, plays a crucial role in the economic process. What separates electricity from other commodities is the impossibility of storing it on a large scale and cost-effective construction of new power generation and distribution plants. Also, the existence of seasonality, nonlinear complexity, and ambiguity pattern in electrici...

متن کامل

Modeling and Forecasting Intraday Electricity Load

This paper aims models electricity load curves for short-term forecasting purposes. A broad class of multivariate dynamic regression model is proposed to model hourly electricity load. Alternative forecasting models, special cases of our general model, include separate time series regressions for each hour and week day. All the models developed include components that represent trends, seasons ...

متن کامل

The Multi-Point Values of Appropriate Smoothing Parameters λ Opt . of HP-filter for Mid-Term Load Forecasting based on Neural Network

The multi-point values of an appropriate smoothing parameter of HP-filter algorithm for midterm electricity load demand (MELD) forecasting are proposed. The case study employs the data based on the organization of the Electricity Generating Authority of Thailand (EGAT). The research shows the growth at rate of weather and economic factors influencing to the electricity demand. The main focus of...

متن کامل

A new adaptive exponential smoothing method for non-stationary time series with level shifts

Simple exponential smoothing (SES) methods are the most commonly used methods in forecasting and time series analysis. However, they are generally insensitive to non-stationary structural events such as level shifts, ramp shifts, and spikes or impulses. Similar to that of outliers in stationary time series, these non-stationary events will lead to increased level of errors in the forecasting pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012