vttRA and vttRB Encode ToxR family proteins that mediate bile-induced expression of type three secretion system genes in a non-O1/non-O139 Vibrio cholerae strain.
نویسندگان
چکیده
Strain AM-19226 is a pathogenic non-O1/non-O139 serogroup Vibrio cholerae strain that does not encode the toxin-coregulated pilus or cholera toxin but instead causes disease using a type three secretion system (T3SS). Two genes within the T3SS pathogenicity island, herein named vttR(A) (locus tag A33_1664) and vttR(B) (locus tag A33_1675), are predicted to encode proteins that show similarity to the transcriptional regulator ToxR, which is found in all strains of V. cholerae. Strains with a deletion of vttR(A) or vttR(B) showed attenuated colonization in vivo, indicating that the T3SS-encoded regulatory proteins play a role in virulence. lacZ transcriptional reporter fusions to intergenic regions upstream of genes encoding the T3SS structural components identified growth in the presence of bile as a condition that modulates gene expression. Under this condition, VttR(A) and VttR(B) were necessary for maximal gene expression. In contrast, growth in bile did not substantially alter the expression of a reporter fusion to the vopF gene, which encodes an effector protein. Increased vttR(B) reporter fusion activity was observed in a DeltavttR(B) strain background, suggesting that VttR(B) may regulate its own expression. The collective results are consistent with the hypothesis that T3SS-encoded regulatory proteins are essential for pathogenesis and control the expression of selected T3SS genes.
منابع مشابه
Regulation by ToxR-Like Proteins Converges on vttRB Expression To Control Type 3 Secretion System-Dependent Caco2-BBE Cytotoxicity in Vibrio cholerae.
UNLABELLED Genes carried on the type 3 secretion system (T3SS) pathogenicity island of Vibrio cholerae non-O1/non-O139 serogroup strain AM-19226 must be precisely regulated in order for bacteria to cause disease. Previously reported results showed that both T3SS function and the presence of bile are required to cause Caco2-BBE cell cytotoxicity during coculture with strain AM-19226. We therefor...
متن کاملMolecular analysis of Vibrio cholerae O1, O139, non-O1, and non-O139 strains: clonal relationships between clinical and environmental isolates.
A total of 26 strains of Vibrio cholerae, including members of the O1, O139, and non-O1, non-O139 serogroups from both clinical and environmental sources, were examined for the presence of genes encoding cholera toxin (ctxA), zonula occludens toxin (zot), accessory cholera enterotoxin (ace), hemolysin (hlyA), NAG-specific heat-stable toxin (st), toxin-coregulated pilus (tcpA), and outer membran...
متن کاملDistribution and sequence analysis of virulence associated genes in Vibrio cholerae O1, O139 and non-O1/non-O139 isolates from Thailand.
Virulence-associated genes of Vibrio cholerae including O1, O139 and non-O1/non-O139 from an outbreak in Songkhla Province and sporadic cases occurred in Thailand during 1993 - 2002 were investigated. One hundred eighty-five V. cholerae strains were examined for the presence of virulence-associated genes including ctxA, tcpA, zot, toxR, toxS, toxT, and ace by polymerase chain reaction. DNA sequ...
متن کاملGenomic characterization of non-O1, non-O139 Vibrio cholerae reveals genes for a type III secretion system.
Non-O1, non-O139 Vibrio cholerae can cause gastroenteritis and extraintestinal infections, but, unlike O1 and O139 strains of V. cholerae, little is known about the virulence gene content of non-O1, non-O139 strains and their phylogenetic relationship to other pathogenic V. cholerae. Comparative genomic microarray analysis of four pathogenic non-O1, non-O139 strains indicates that these strains...
متن کاملVibrio pathogenicity island and cholera toxin genetic element-associated virulence genes and their expression in non-O1 non-O139 strains of Vibrio cholerae.
A non-O1 non-O139 Vibrio cholerae strain, 10259, belonging to the serogroup O53 was shown to harbor genes related to the vibrio pathogenicity island (VPI) and a cholera toxin (CT) genetic element called CTX. While the nucleotide sequence of the strain 10259 tcpA gene differed significantly (26 and 28%) from those of O1 classical and El Tor biotype strains, respectively, partial sequence analysi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Infection and immunity
دوره 78 6 شماره
صفحات -
تاریخ انتشار 2010