Bradykinin-induced chemotaxis of human gliomas requires the activation of KCa3.1 and ClC-3.

نویسندگان

  • Vishnu Anand Cuddapah
  • Kathryn L Turner
  • Stefanie Seifert
  • Harald Sontheimer
چکیده

Previous reports demonstrate that cell migration in the nervous system is associated with stereotypic changes in intracellular calcium concentration ([Ca(2+)](i)), yet the target of these changes are essentially unknown. We examined chemotactic migration/invasion of human gliomas to study how [Ca(2+)](i) regulates cellular movement and to identify downstream targets. Gliomas are primary brain cancers that spread exclusively within the brain, frequently migrating along blood vessels to which they are chemotactically attracted by bradykinin. Using simultaneous fura-2 Ca(2+) imaging and amphotericin B perforated patch-clamp electrophysiology, we find that bradykinin raises [Ca(2+)](i) and induces a biphasic voltage response. This voltage response is mediated by the coordinated activation of Ca(2+)-dependent, TRAM-34-sensitive K(Ca)3.1 channels, and Ca(2+)-dependent, 4,4'-diisothiocyanato-stilbene-2,2'-disulfonic acid (DIDS)-sensitive and gluconate-sensitive Cl(-) channels. A significant portion of these Cl(-) currents can be attributed to Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) activation of ClC-3, a voltage-gated Cl(-) channel/transporter, because pharmacological inhibition of CaMKII or shRNA-mediated knockdown of ClC-3 inhibited Ca(2+)-activated Cl(-) currents. Western blots show that K(Ca)3.1 and ClC-3 are expressed in tissue samples obtained from patients diagnosed with grade IV gliomas. Both K(Ca)3.1 and ClC-3 colocalize to the invading processes of glioma cells. Importantly, inhibition of either channel abrogates bradykinin-induced chemotaxis and reduces tumor expansion in mouse brain slices in situ. These channels should be further explored as future targets for anti-invasive drugs. Furthermore, these data elucidate a novel mechanism placing cation and anion channels downstream of ligand-mediated [Ca(2+)](i) increases, which likely play similar roles in other migratory cells in the nervous system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Noscapine antagonizes vasoconstrictor action of bradykinin in isolated human umbilical artery

 Abstract Background: It has been demonstrated that noscapine, an antitussive opioid alkaloid, could antagonize bradykinin- induced responses such as bradykinin effects in guinea-pig ileum, cough induced by bradykinin receptor agonist and angiotensin converting enzyme inhibitors, and brain damage after brain edema both in neonatal rat model and in patients with stroke. In the present study, the...

متن کامل

Adenosine closes the K+ channel KCa3.1 in human lung mast cells and inhibits their migration via the adenosine A2A receptor

Human lung mast cells (HLMC) express the Ca2+-activated K+ channel KCa3.1, which opens following IgE-dependent activation. This hyperpolarises the cell membrane and potentiates both Ca2+ influx and degranulation. In addition, blockade of KCa3.1 profoundly inhibits HLMC migration to a variety of diverse chemotactic stimuli. KCa3.1 activation is attenuated by the beta2adrenoceptor through a Galph...

متن کامل

Chloride channel protein 2 prevents glutamate-induced apoptosis in retinal ganglion cells

Objective(s): The purpose of this study was to investigate the role of chloride channel protein 2 (ClC-2) in glutamate-induced apoptosis in the retinal ganglion cell line (RGC-5). Materials and Methods: RGC-5 cells were treated with 1 mM glutamate for 24 hr. The expression of ClC-2, Bax, and Bcl-2 was detected by western blot analysis. Cell survival and apoptosis were measured by 3-(4,5-dimeth...

متن کامل

KCa3.1 mediates activation of fibroblasts in diabetic renal interstitial fibrosis

BACKGROUND Fibroblast activation plays a critical role in diabetic nephropathy (DN). The Ca2+-activated K+ channel KCa3.1 mediates cellular proliferation of many cell types including fibroblasts. KCa3.1 has been reported to be a potential molecular target for pharmacological intervention in a diverse array of clinical conditions. However, the role of KCa3.1 in the activation of myofibroblasts i...

متن کامل

A novel pan-negative-gating modulator of KCa2/3 channels, fluoro-di-benzoate, RA-2, inhibits endothelium-derived hyperpolarization-type relaxation in coronary artery and produces bradycardia in vivo.

Small/intermediate conductance KCa channels (KCa2/3) are Ca(2+)/calmodulin regulated K(+) channels that produce membrane hyperpolarization and shape neurologic, epithelial, cardiovascular, and immunologic functions. Moreover, they emerged as therapeutic targets to treat cardiovascular disease, chronic inflammation, and some cancers. Here, we aimed to generate a new pharmacophore for negative-ga...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 33 4  شماره 

صفحات  -

تاریخ انتشار 2013