Segmenting Brain Tissues from Chinese Visible Human Dataset by Deep-Learned Features with Stacked Autoencoder
نویسندگان
چکیده
Cryosection brain images in Chinese Visible Human (CVH) dataset contain rich anatomical structure information of tissues because of its high resolution (e.g., 0.167 mm per pixel). Fast and accurate segmentation of these images into white matter, gray matter, and cerebrospinal fluid plays a critical role in analyzing and measuring the anatomical structures of human brain. However, most existing automated segmentation methods are designed for computed tomography or magnetic resonance imaging data, and they may not be applicable for cryosection images due to the imaging difference. In this paper, we propose a supervised learning-based CVH brain tissues segmentation method that uses stacked autoencoder (SAE) to automatically learn the deep feature representations. Specifically, our model includes two successive parts where two three-layer SAEs take image patches as input to learn the complex anatomical feature representation, and then these features are sent to Softmax classifier for inferring the labels. Experimental results validated the effectiveness of our method and showed that it outperformed four other classical brain tissue detection strategies. Furthermore, we reconstructed three-dimensional surfaces of these tissues, which show their potential in exploring the high-resolution anatomical structures of human brain.
منابع مشابه
Marginalized Stacked Denoising Autoencoders
Stacked Denoising Autoencoders (SDAs) [4] have been used successfully in many learning scenarios and application domains. In short, denoising autoencoders (DAs) train one-layer neural networks to reconstruct input data from partial random corruption. The denoisers are then stacked into deep learning architectures where the weights are fine-tuned with back-propagation. Alternatively, the outputs...
متن کاملDetection of Pitting in Gears Using a Deep Sparse Autoencoder
In this paper; a new method for gear pitting fault detection is presented. The presented method is developed based on a deep sparse autoencoder. The method integrates dictionary learning in sparse coding into a stacked autoencoder network. Sparse coding with dictionary learning is viewed as an adaptive feature extraction method for machinery fault diagnosis. An autoencoder is an unsupervised ma...
متن کاملMeasuring Invariances in Deep Networks
For many pattern recognition tasks, the ideal input feature would be invariant to multiple confounding properties (such as illumination and viewing angle, in computer vision applications). Recently, deep architectures trained in an unsupervised manner have been proposed as an automatic method for extracting useful features. However, it is difficult to evaluate the learned features by any means ...
متن کاملDomain Specific Named Entity Recognition Referring to the Real World by Deep Neural Networks
In this paper, we propose a method for referring to the real world to improve named entity recognition (NER) specialized for a domain. Our method adds a stacked autoencoder to a text-based deep neural network for NER. We first train the stacked auto-encoder only from the real world information, then the entire deep neural network from sentences annotated with NEs and accompanied by real world i...
متن کاملDeep Dictionary Learning vs Deep Belief Network vs Stacked Autoencoder: An Empirical Analysis
A recent work introduced the concept of deep dictionary learning. The first level is a dictionary learning stage where the inputs are the training data and the outputs are the dictionary and learned coefficients. In subsequent levels of deep dictionary learning, the learned coefficients from the previous level acts as inputs. This is an unsupervised representation learning technique. In this wo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2016 شماره
صفحات -
تاریخ انتشار 2016