Weak Cost Monadic Logic over Infinite Trees

نویسنده

  • Michael Vanden Boom
چکیده

Cost monadic logic has been introduced recently as a quantitative extension to monadic second-order logic. A sentence in the logic defines a function from a set of structures to N∪{∞}, modulo an equivalence relation which ignores exact values but preserves boundedness properties. The rich theory associated with these functions has already been studied over finite words and trees. We extend the theory to infinite trees for the weak form of the logic (where second-order quantification is interpreted over finite sets). In particular, we show weak cost monadic logic is equivalent to weak cost automata, and finite-memory strategies suffice in the infinite two-player games derived from such automata. We use these results to provide a decision procedure for the logic and to show there is a function definable in cost monadic logic which is not definable in weak cost monadic logic.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weak MSO+U with Path Quantifiers over Infinite Trees

This paper shows that over infinite trees, satisfiability is decidable for weak monadic second-order logic extended by the unbounding quantifier U and quantification over infinite paths. The proof is by reduction to emptiness for a certain automaton model, while emptiness for the automaton model is decided using profinite trees. This paper presents a logic over infinite trees with decidable sat...

متن کامل

Weak MSO+U over infinite trees

We prove that, over infinite trees, satisfiability is decidable for Weak Monadic Second-Order Logic extended by the unbounding quantifier U. We develop an automaton model, prove that it is effectively equivalent to the logic, and that the automaton model has decidable emptiness. 1998 ACM Subject Classification F.1.1 Models of Computation, F.4.1 Mathematical Logic

متن کامل

Characterizing EF over Infinite Trees and Modal Logic on Transitive Graphs

We provide several effective equivalent characterizations of EF (the modal logic of the descendant relation) on arbitrary trees. More specifically, we prove that, for EF-bisimulation invariant properties of trees, being definable by an EF formula, being a Borel set, and being definable in weak monadic second order logic, all coincide. The proof builds upon a known algebraic characterization of ...

متن کامل

Expressiveness of Monadic Second-Order Logics on Infinite Trees of Arbitrary Branching Degree

In this thesis we study the expressive power of variants of monadic second-order logic (MSO) on infinite trees by means of automata. In particular we are interested in weak MSO and well-founded MSO, where the second-order quantifiers range respectively over finite sets and over subsets of well-founded trees. On finitely branching trees, weak and well-founded MSO have the same expressive power a...

متن کامل

Deciding the weak definability of Büchi definable tree languages

Weakly definable languages of infinite trees are an expressive subclass of regular tree languages definable in terms of weak monadic second-order logic, or equivalently weak alternating automata. Our main result is that given a Büchi automaton, it is decidable whether the language is weakly definable. We also show that given a parity automaton, it is decidable whether the language is recognizab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011