Nucleotide-dependent protein folding in the type II chaperonin from the mesophilic archaeon Methanococcus maripaludis.

نویسندگان

  • Andrew R Kusmierczyk
  • Jörg Martin
چکیده

We report the characterization of the first chaperonin (Mm-cpn) from a mesophilic archaeon, Methanococcus maripaludis. The single gene was cloned from genomic DNA and expressed in Escherichia coli to produce a recombinant protein of 543 amino acids. In contrast with other known archaeal chaperonins, Mm-cpn is fully functional in all respects under physiological conditions of 37 degrees C. The complex has Mg(2+)-dependent ATPase activity and can prevent the aggregation of citrate synthase. It promotes a high-yield refolding of guanidinium-chloride-denatured rhodanese in a nucleotide-dependent manner. ATP binding is sufficient to effect folding, but ATP hydrolysis is not essential.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Replacement of GroEL in Escherichia coli by the Group II Chaperonin from the Archaeon Methanococcus maripaludis

UNLABELLED Chaperonins are required for correct folding of many proteins. They exist in two phylogenetic groups: group I, found in bacteria and eukaryotic organelles, and group II, found in archaea and eukaryotic cytoplasm. The two groups, while homologous, differ significantly in structure and mechanism. The evolution of group II chaperonins has been proposed to have been crucial in enabling t...

متن کامل

Mechanism of nucleotide sensing in group II chaperonins.

Group II chaperonins mediate protein folding in an ATP-dependent manner in eukaryotes and archaea. The binding of ATP and subsequent hydrolysis promotes the closure of the multi-subunit rings where protein folding occurs. The mechanism by which local changes in the nucleotide-binding site are communicated between individual subunits is unknown. The crystal structure of the archaeal chaperonin f...

متن کامل

Impact of translational selection on codon usage bias in the archaeon Methanococcus maripaludis.

Patterns of codon usage have been extensively studied among Bacteria and Eukaryotes, but there has been little investigation of species from the third domain of life, the Archaea. Here, we examine the nature of codon usage bias in a methanogenic archaeon, Methanococcus maripaludis. Genome-wide patterns of codon usage are dominated by a strong A + T bias, presumably largely reflecting mutation p...

متن کامل

Phylogeny and taxonomy of mesophilic Methanococcus spp. and comparison of rRNA, DNA hybridization, and phenotypic methods.

The phylogeny and taxonomy of the mesophilic methane-producing archaea of the order Methanococcales were examined by DNA relatedness, 16S rRNA sequence analysis, cellular protein patterns, and phenotypic methods. The mesophilic species Methanococcus maripaludis, Methanococcus vannielii, Methanococcus voltaei, and "Methanococcus aeolicus" formed a deep group with 5 to 30% DNA relatedness and 92 ...

متن کامل

Function and regulation of the formate dehydrogenase genes of the methanogenic archaeon Methanococcus maripaludis.

Methanococcus maripaludis is a mesophilic species of Archaea capable of producing methane from two substrates: hydrogen plus carbon dioxide and formate. To study the latter, we identified the formate dehydrogenase genes of M. maripaludis and found that the genome contains two gene clusters important for formate utilization. Phylogenetic analysis suggested that the two formate dehydrogenase gene...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Biochemical journal

دوره 371 Pt 3  شماره 

صفحات  -

تاریخ انتشار 2003