A Novel Visual Word Co-occurrence Model for Person Re-identification
نویسندگان
چکیده
Person re-identification aims to maintain the identity of an individual in diverse locations through different non-overlapping camera views. The problem is fundamentally challenging due to appearance variations resulting from differing poses, illumination and configurations of camera views. To deal with these difficulties, we propose a novel visual word co-occurrence model. We first map each pixel of an image to a visual word using a codebook, which is learned in an unsupervised manner. The appearance transformation between camera views is encoded by a co-occurrence matrix of visual word joint distributions in probe and gallery images. Our appearance model naturally accounts for spatial similarities and variations caused by pose, illumination & configuration change across camera views. Linear SVMs are then trained as classifiers using these co-occurrence descriptors. On the VIPeR [1] and CUHK Campus [2] benchmark datasets, our method achieves 83.86% and 85.49% at rank-15 on the Cumulative Match Characteristic (CMC) curves, and beats the state-of-the-art results by 10.44% and 22.27%.
منابع مشابه
Crossing Generative Adversarial Networks for Cross-View Person Re-identification
Person re-identification (re-id) refers to matching pedestrians across disjoint yet non-overlapping camera views. The most effective way to match these pedestrians undertaking significant visual variations is to seek reliably invariant features that can describe the person of interest faithfully. Most of existing methods are presented in a supervised manner to produce discriminative features by...
متن کاملPerson Re-identification via Structured Prediction
The goal of person re-identification (re-id) is to maintain the identity of an individual in diverse locations through different non-overlapping camera views. Re-id is fundamentally challenging because of appearance changes resulting from differing pose, illumination and camera calibration of the two views. Existing literature deals with the two-camera problem and proposes methods that seek to ...
متن کاملA Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features
Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...
متن کاملA Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features
Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...
متن کاملPerson Re-identification by Video Ranking
Current person re-identification (re-id) methods typically rely on single-frame imagery features, and ignore space-time information from image sequences. Single-frame (single-shot) visual appearance matching is inherently limited for person re-id in public spaces due to visual ambiguity arising from non-overlapping camera views where viewpoint and lighting changes can cause significant appearan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014