A Smoothed Q-Learning Algorithm for Estimating Optimal Dynamic Treatment Regimes∗
نویسندگان
چکیده
In this paper we propose a smoothed Q-learning algorithm for estimating optimal dynamic treatment regimes. In contrast to the Q-learning algorithm in which non-regular inference is involved, we show that under assumptions adopted in this paper, the proposed smoothed Q-learning estimator is asymptotically normally distributed even when the Q-learning estimator is not and its asymptotic variance can be consistently estimated. As a result, inference based on the smoothed Q-learning estimator is standard. We derive the optimal smoothing parameter and propose a data-driven method for estimating it. The finite sample properties of the smoothed Q-learning estimator are studied and compared with several existing estimators including the Q-learning estimator via an extensive simulation study. We illustrate the new method by analyzing data from the Clinical Antipsychotic Trials of Intervention EffectivenessAlzheimer’s Disease (CATIE-AD) study.
منابع مشابه
Q-learning: Flexible learning about useful utilities
Dynamic treatment regimes are fast becoming an important part of medicine, with the corresponding change in emphasis from treatment of the disease to treatment of the individual patient. Because of the limited number of trials to evaluate personally tailored treatment sequences, inferring optimal treatment regimes from observational data has increased importance. Q-learning is a popular method ...
متن کاملiqLearn: Interactive Q-Learning in R.
Chronic illness treatment strategies must adapt to the evolving health status of the patient receiving treatment. Data-driven dynamic treatment regimes can offer guidance for clinicians and intervention scientists on how to treat patients over time in order to bring about the most favorable clinical outcome on average. Methods for estimating optimal dynamic treatment regimes, such as Q-learning...
متن کاملNew Statistical Learning Methods for Estimating Optimal Dynamic Treatment Regimes.
Dynamic treatment regimes (DTRs) are sequential decision rules for individual patients that can adapt over time to an evolving illness. The goal is to accommodate heterogeneity among patients and find the DTR which will produce the best long term outcome if implemented. We introduce two new statistical learning methods for estimating the optimal DTR, termed backward outcome weighted learning (B...
متن کاملA Bayesian Machine Learning Approach for Optimizing Dynamic Treatment Regimes
Medical therapy often consists of multiple stages, with a treatment chosen by the physician at each stage based on the patient’s history of treatments and clinical outcomes. These decisions can be formalized as a dynamic treatment regime. This paper describes a new approach for optimizing dynamic treatment regimes that bridges the gap between Bayesian inference and existing approaches, like Q-l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016