Improved Sufficient Conditions for Sparse Recovery with Generalized Orthogonal Matching Pursuit

نویسندگان

  • Jinming Wen
  • Zhengchun Zhou
  • Dongfang Li
  • Xiaohu Tang
چکیده

Generalized orthogonal matching pursuit (gOMP), also called orthogonal multi-matching pursuit, is an extension of OMP in the sense that N ≥ 1 indices are identified per iteration. In this paper, we show that if the restricted isometry constant (RIC) δNK+1 of a sensing matrix A satisfies δNK+1 < 1/ √ K/N + 1, then under a condition on the signal-to-noise ratio, gOMP identifies at least one index in the support of any K-sparse signal x from y = Ax+ v at each iteration, where v is a noise vector. Surprisingly, this condition does not require N ≤ K which is needed in Wang, et al 2012 and Liu, et al 2012. Thus, N can have more choices. When N = 1, it reduces to be a sufficient condition for OMP, which is less restrictive than that proposed in Wang 2015. Moreover, in the noise-free case, it is a sufficient condition for accurately recovering x in K iterations which is less restrictive than the best known one. In particular, it reduces to the sharp condition proposed in Mo 2015 when N = 1.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recovery of Block-Sparse Representations from Noisy Observations via Orthogonal Matching Pursuit

We study the problem of recovering the sparsity pattern of block-sparse signals from noise-corrupted measurements. A simple, efficient recovery method, namely, a block-version of the orthogonal matching pursuit (OMP) method, is considered in this paper and its behavior for recovering the block-sparsity pattern is analyzed. We provide sufficient conditions under which the block-version of the OM...

متن کامل

A New Look at Generalized Orthogonal Matching Pursuit: Stable Signal Recovery under Measurement Noise

Generalized orthogonal matching pursuit (gOMP) is an extension of orthogonal matching pursuit (OMP) algorithm designed to improve the recovery performance of sparse signals. In this paper, we provide a new analysis for the gOMP algorithm for both noiseless and noisy scenarios. We show that if the measurement matrix Φ ∈ R satisfies the restricted isometry property (RIP) with δ7K+N−1 ≤ 0.0231, th...

متن کامل

A sharp recovery condition for sparse signals with partial support information via orthogonal matching pursuit

This paper considers the exact recovery of k-sparse signals in the noiseless setting and support recovery in the noisy case when some prior information on the support of the signals is available. This prior support consists of two parts. One part is a subset of the true support and another part is outside of the true support. For k-sparse signals x with the prior support which is composed of g ...

متن کامل

Sharp Sufficient Conditions for Stable Recovery of Block Sparse Signals by Block Orthogonal Matching Pursuit

In this paper, we use the block orthogonal matching pursuit (BOMP) algorithm to recover block sparse signals x from measurements y = Ax+v, where v is a l2 bounded noise vector (i.e., ‖v‖2 ≤ ǫ for some constant ǫ). We investigate some sufficient conditions based on the block restricted isometry property (block-RIP) for exact (when v = 0) and stable (when v 6= 0) recovery of block sparse signals ...

متن کامل

Support Recovery with Orthogonal Matching Pursuit in the Presence of Noise: A New Analysis

Support recovery of sparse signals from compressed linear measurements is a fundamental problem in compressed sensing (CS). In this paper, we study the orthogonal matching pursuit (OMP) algorithm for the recovery of support under noise. We consider two signal-to-noise ratio (SNR) settings: i) the SNR depends on the sparsity level K of input signals, and ii) the SNR is an absolute constant indep...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1603.01507  شماره 

صفحات  -

تاریخ انتشار 2016