Towards kinetic modeling of genome-scale metabolic networks without sacrificing stoichiometric, thermodynamic and physiological constraints.
نویسندگان
چکیده
Mathematical modeling is an essential tool for the comprehensive understanding of cell metabolism and its interactions with the environmental and process conditions. Recent developments in the construction and analysis of stoichiometric models made it possible to define limits on steady-state metabolic behavior using flux balance analysis. However, detailed information on enzyme kinetics and enzyme regulation is needed to formulate kinetic models that can accurately capture the dynamic metabolic responses. The use of mechanistic enzyme kinetics is a difficult task due to uncertainty in the kinetic properties of enzymes. Therefore, the majority of recent works considered only mass action kinetics for reactions in metabolic networks. Herein, we applied the optimization and risk analysis of complex living entities (ORACLE) framework and constructed a large-scale mechanistic kinetic model of optimally grown Escherichia coli. We investigated the complex interplay between stoichiometry, thermodynamics, and kinetics in determining the flexibility and capabilities of metabolism. Our results indicate that enzyme saturation is a necessary consideration in modeling metabolic networks and it extends the feasible ranges of metabolic fluxes and metabolite concentrations. Our results further suggest that enzymes in metabolic networks have evolved to function at different saturation states to ensure greater flexibility and robustness of cellular metabolism.
منابع مشابه
Genome-Scale Metabolic Network Models of Bacillus Species Suggest that Model Improvement is Necessary for Biotechnological Applications
Background: A genome-scale metabolic network model (GEM) is a mathematical representation of an organism’s metabolism. Today, GEMs are popular tools for computationally simulating the biotechnological processes and for predicting biochemical properties of (engineered) strains.Objectives: In the present study, we have evaluated the predictive power of two ...
متن کاملInterplay between Constraints, Objectives, and Optimality for Genome-Scale Stoichiometric Models
High-throughput data generation and genome-scale stoichiometric models have greatly facilitated the comprehensive study of metabolic networks. The computation of all feasible metabolic routes with these models, given stoichiometric, thermodynamic, and steady-state constraints, provides important insights into the metabolic capacities of a cell. How the feasible metabolic routes emerge from the ...
متن کاملStoichiometric analysis of metabolic networks
A major current challenge in systems biology is to clarify the relationship between structure, function and regulation in complex metabolic networks reconstructed from genomic data. However, dynamic mathematical modeling of large-scale networks meets difficulties as the necessary mechanistic detail and kinetic parameters are rarely available. In contrast, structure-oriented (stoichiometric / co...
متن کاملPrediction of Microbial Growth Rate versus Biomass Yield by a Metabolic Network with Kinetic Parameters
Identifying the factors that determine microbial growth rate under various environmental and genetic conditions is a major challenge of systems biology. While current genome-scale metabolic modeling approaches enable us to successfully predict a variety of metabolic phenotypes, including maximal biomass yield, the prediction of actual growth rate is a long standing goal. This gap stems from str...
متن کاملAb initio prediction of thermodynamically feasible reaction directions from biochemical network stoichiometry.
Analysis of the stoichiometric structure of metabolic networks provides insights into the relationships between structure, function, and regulation of metabolic systems. Based on knowledge of only reaction stoichiometry, certain aspects of network functionality and robustness can be predicted. Current theories focus on breaking a metabolic network down into non-decomposable pathways able to ope...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biotechnology journal
دوره 8 9 شماره
صفحات -
تاریخ انتشار 2013