X-Ray Absorption Spectroscopy Imaging of Biological Tissues
نویسندگان
چکیده
X-ray absorption spectroscopy (XAS) is proving invaluable in determining the average chemical form of metals or metalloids in intact biological tissues. As most tissues have spatial structure, there is great additional interest in visualizing the spatial location of the metal(loid) as well as its chemical forms. XAS imaging gives the opportunity of producing maps of specific chemical types of elements in vivo in dilute biological systems. X-ray fluorescence microprobe techniques are routinely used to study samples with spatial heterogeneity. Microprobe produces elemental maps, with chemical sensitivity obtained by recording micro-XAS spectra at selected point locations on the map. Unfortunately, using these procedures spatial detail may be lost as the number of point spectra recorded generally is limited. A powerful extension of microprobe is XAS imaging or chemically specific imaging. Here, the incident energy is tuned to features in the near-edge which are characteristic of the expected chemical forms of the element. With a few simple assumptions, these XAS images can then be converted to quantitative images of specific chemical form, yielding considerable clarity in the distributions.
منابع مشابه
Evaluation of X-ray absorbed dose in thyroid during CXR imaging of the chest by Monte Carlo simulation (DOSXYZnrc)
Abstract: Introduction: Chest radiography is one of the most common X-ray imaging procedures performed worldwide. During this process, in addition to the chest, other tissues, including the thyroid, are also exposed to radiation. Due to the fact that one of the most important risk factors for thyroid cancer is ionizing radiation, measuring the absorption of X- rays in the thyroid is of spec...
متن کاملIntroducing an Optimized Method for Obtaining X-ray Diffraction Patterns of Biological Tissues
Introduction Individual X-Ray diffraction patterns of biological tissues are obtained via interference of coherent scattering with their electrons. Many scientists have distinguished normal and cancerous breast tissue, bone density, and urinary stone types using the X-Ray diffraction patterns resulting from coherent scattering. The goal of this study was to introduce an optimized method for obt...
متن کاملX-Ray Absorption Near Edge Structure and Mössbauer Spectroscopy in Study of Iron Valence States in Tissues
X-ray absorption near edge structure Fe K-edge spectra and Fe Mössbauer spectra of selected standard compounds were recorded at room temperature. Valence and spin states of Fe in these samples known from Mössbauer spectroscopy were correlated with the shapes of X-ray absorption near edge structure spectra in search of possible application of X-ray absorption near edge structure spectroscopy as ...
متن کاملX-Ray Absorption Near Edge Spectroscopy of Sulfur in Biomolecules: Two Examples from Glutathione and Insulin
Although a minor constituent of cell and tissues, sulfur is an essential element to fulfil a wide range of biological processes, and it is present in the functional groups of many biomolecules that participate to redox reactions in vivo. Cysteine, one of the two S-containing aminoacids present in proteins, contains sulfur in fully reduced form and its thiol group can undergo a range of reaction...
متن کاملA Review of the Applications of Synchrotron Radiation in Archaeological Sciences
The scientific research regarding investigation, characterization and protection of the archeological specimens is manifested through a notable participation of multidisciplinary subjects and experts, scientists and archeometrists. One of the main principals which are considered by archaeometrists in the study of the precious specimens is the utilizing nondestructive methods. As an example, in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006