Noncommutative Geometry and Matrix Theory: Compactification on Tori

نویسندگان

  • Alain Connes
  • Michael R. Douglas
  • Albert Schwarz
چکیده

We study toroidal compactification of Matrix theory, using ideas and results of noncommutative geometry. We generalize this to compactification on the noncommutative torus, explain the classification of these backgrounds, and argue that they correspond in supergravity to tori with constant background three-form tensor field. The paper includes an introduction for mathematicians to the IKKT formulation of Matrix theory and its relation to the BFSS Matrix theory.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matrix Theory on Noncommutative Torus

We consider the compactification of Matrix theory on tori with background anti-symmetric tensor field. Douglas and Hull have recently discussed how noncommutative geometry appears on the tori. In this paper, we demonstrate the concrete construction of this compactification of Matrix theory in a similar way to that previously given by Taylor.

متن کامل

Towards a Noncommutative Geometric Approach to Matrix Compactification

In this paper we study generic M(atrix) theory compactifications that are specified by a set of quotient conditions. A procedure is proposed, which both associates an algebra to each compactification and leads deductively to general solutions for the matrix variables. The notion of noncommutative geometry on the dual space is central to this construction. As examples we apply this procedure to ...

متن کامل

D-branes and the Noncommutative Torus

We show that in certain superstring compactifications, gauge theories on noncommutative tori will naturally appear as D-brane world-volume theories. This gives strong evidence that they are well-defined quantum theories. It also gives a physical derivation of the identification proposed by Connes, Douglas and Schwarz of Matrix theory compactification on the noncommutative torus with M theory co...

متن کامل

ar X iv : h ep - t h / 00 12 14 5 v 3 2 9 Ju l 2 00 1 Introduction to M ( atrix ) theory and noncommutative geometry

Noncommutative geometry is based on an idea that an associative algebra can be regarded as " an algebra of functions on a noncommutative space ". The major contribution to noncommutative geometry was made by A. Connes, who, in particular, analyzed Yang-Mills theories on noncommutative spaces, using important notions that were introduced in his papers (connection, Chern character, etc). It was f...

متن کامل

0 Introduction to M ( atrix ) theory and noncommutative geometry

We give a mostly self-contained review of some aspects of M(atrix) theory and noncommutative geometry. The topics include introduction to BFSS and IKKT matrix models, compactifications on noncommutative tori, a review of basic notions of noncommutative geometry with a detailed discussion of noncommutative tori, Morita equivalence and SO(d, d|Z)-duality, an elementary discussion of instantons an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997