On the structure of stationary solutions of the Navier-Stokes equations
نویسنده
چکیده
We consider stationary solutions of the incompressible Navier-Stokes equations in two dimensions. We give a detailed description of the fluid flow in a half-plane by using a mathematical setup within which the idea of a change of type from an elliptic to a parabolic partial differential equation can be made precise.
منابع مشابه
A comparative study between two numerical solutions of the Navier-Stokes equations
The present study aimed to investigate two numerical solutions of the Navier-Stokes equations. For this purpose, the mentioned flow equations were written in two different formulations, namely (i) velocity-pressure and (ii) vorticity-stream function formulations. Solution algorithms and boundary conditions were presented for both formulations and the efficiency of each formulation was investiga...
متن کاملInvestigation of instable fluid velocity in pipes with internal nanofluid flow based on Navier-Stokes equations
In this article, the instable fluid velocity in the pipes with internal nanofluid is studied. The fluid is mixed by SiO2, AL2O3, CuO and TiO2 nanoparticles in which the equivalent characteristic of nanofluid is calculated by rule of mixture. The force induced by the nanofluid is assumed in radial direction and is obtained by Navier-Stokes equation considering viscosity of nanofluid. The displac...
متن کاملOn nonexistence for stationary solutions to the Navier-Stokes equations with a linear strain
We consider stationary solutions to the three-dimensional Navier-Stokes equations for viscous incompressible flows in the presence of a linear strain. For certain class of strains we prove a Liouville type theorem under suitable decay conditions on vorticity fields.
متن کاملInviscid limit for damped and driven incompressible Navier-Stokes equations in R
We consider the zero viscosity limit of long time averages of solutions of damped and driven Navier-Stokes equations in R. We prove that the rate of dissipation of enstrophy vanishes. Stationary statistical solutions of the damped and driven Navier-Stokes equations converge to renormalized stationary statistical solutions of the damped and driven Euler equations. These solutions obey the enstro...
متن کاملN ov 2 00 6 Inviscid limit for damped and driven incompressible Navier - Stokes equations in R 2
We consider the zero viscosity limit of long time averages of solutions of damped and driven Navier-Stokes equations in R 2. We prove that the rate of dissipation of enstrophy vanishes. Stationary statistical solutions of the damped and driven Navier-Stokes equations converge to renormalized stationary statistical solutions of the damped and driven Euler equations. These solutions obey the enst...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001