Thermal modeling environment for TMT

نویسنده

  • Konstantinos Vogiatzis
چکیده

In a previous study we had presented a summary of the TMT Aero-Thermal modeling effort to support thermal seeing and dynamic loading estimates. In this paper a summary of the current status of Computational Fluid Dynamics (CFD) simulations for TMT is presented, with the focus shifted in particular towards the synergy between CFD and the TMT Finite Element Analysis (FEA) structural and optical models, so that the thermal and consequent optical deformations of the telescope can be calculated. To minimize thermal deformations and mirror seeing the TMT enclosure will be air conditioned during day-time to the expected night-time ambient temperature. Transient simulations with closed shutter were performed to investigate the optimum cooling configuration and power requirements for the standard telescope parking position. A complete model of the observatory on Mauna Kea was used to calculate night-time air temperature inside the enclosure (along with velocity and pressure) for a matrix of given telescope orientations and enclosure configurations. Generated records of temperature variations inside the air volume of the optical paths are also fed into the TMT thermal seeing model. The temperature and heat transfer coefficient outputs from both models are used as input surface boundary conditions in the telescope structure and optics FEA models. The results are parameterized so that sequential records several days long can be generated and used by the FEA model to estimate the observing spatial and temporal temperature range of the structure and optics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermal Performance Prediction of the TMT Optics

Thermal analysis for the Thirty Meter Telescope (TMT) optics (the primary mirror segment, the secondary mirror, and the tertiary mirror) was performed using finite element analysis in ANSYS and I-DEAS. In the thermal analysis, each of the optical assemblies (mirror, mirror supports, cell) was modeled for various thermal conditions including air convections, conductions, heat flux loadings, and ...

متن کامل

Modeling and Prioritizing Iran's Thermal Power Plant Development Policies Based On Environmental Constraints

Iran is ranked as the ninth largest greenhouse gas producer in the world, with an annual emission of nearly 180 million tons of CO2 by thermal power plants.. The purpose of this research is to simulate and optimize the optimal economic and environmental load dispatch and a portfolio of efficiency improvement strategies on both supply and demand sides in MT1, MT2, and EEP scenarios in using the ...

متن کامل

Numerical Modeling of the Shear Module of Alginate Micro-Beads under the Ultrasonic Thermal Effect

The mechanical properties of microscopic particles have been a heated research object for it takes the deformation of micro-beads in the microfluidic environment into account. Sufficient knowledge on mechanical properties of micro-beads would lead to better device design and application for cell mechanics, tissue engineering, etc. The physical properties of alginate beads were examined both in ...

متن کامل

Monte Carlo Simulation Framework for Tmt

This presentation describes a strategy for assessing the performance of the Thirty Meter Telescope (TMT). A Monte Carlo Simulation Framework has been developed to combine optical modeling with Computational Fluid Dynamics simulations (CFD), Finite Element Analysis (FEA) and controls to model the overall performance of TMT. The framework consists of a two year record of observed environmental pa...

متن کامل

Water Quality Modeling in Persian Gulf Considering Thermal Pollution Sources of Industrial Plants

Numerical modeling is carried out to investigate the spreading pattern of industrial wastewater released from coastal refineries and power plant into thePersian Gulf. The pollutant sources due to the wastewater outfall of the coastal industrial plants are completely considered in the model. The effects of sources are inspected on the adjacent marine environment. The numerical model is developed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011