Properties of Slo1 K+ channels with and without the gating ring.

نویسندگان

  • Gonzalo Budelli
  • Yanyan Geng
  • Alice Butler
  • Karl L Magleby
  • Lawrence Salkoff
چکیده

High-conductance Ca(2+)- and voltage-activated K(+) (Slo1 or BK) channels (KCNMA1) play key roles in many physiological processes. The structure of the Slo1 channel has two functional domains, a core consisting of four voltage sensors controlling an ion-conducting pore, and a larger tail that forms an intracellular gating ring thought to confer Ca(2+) and Mg(2+) sensitivity as well as sensitivity to a host of other intracellular factors. Although the modular structure of the Slo1 channel is known, the functional properties of the core and the allosteric interactions between core and tail are poorly understood because it has not been possible to study the core in the absence of the gating ring. To address these questions, we developed constructs that allow functional cores of Slo1 channels to be expressed by replacing the 827-amino acid gating ring with short tails of either 74 or 11 amino acids. Recorded currents from these constructs reveals that the gating ring is not required for either expression or gating of the core. Voltage activation is retained after the gating ring is replaced, but all Ca(2+)- and Mg(2+)-dependent gating is lost. Replacing the gating ring also right-shifts the conductance-voltage relation, decreases mean open-channel and burst duration by about sixfold, and reduces apparent mean single-channel conductance by about 30%. These results show that the gating ring is not required for voltage activation but is required for Ca(2+) and Mg(2+) activation. They also suggest possible actions of the unliganded (passive) gating ring or added short tails on the core.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel actin-binding domain on Slo1 calcium-activated potassium channels is necessary for their expression in the plasma membrane.

Large-conductance Ca(2+)-activated K(+) (BK(Ca)) channels regulate the physiological properties of many cell types. The gating properties of BK(Ca) channels are Ca(2+)-, voltage- and stretch-sensitive, and stretch-sensitive gating of these channels requires interactions with actin microfilaments subjacent to the plasma membrane. Moreover, we have previously shown that trafficking of BK(Ca) chan...

متن کامل

Molecular mechanism of pharmacological activation of BK channels.

Large-conductance voltage- and Ca(2+)-activated K(+) (Slo1 BK) channels serve numerous cellular functions, and their dysregulation is implicated in various diseases. Drugs activating BK channels therefore bear substantial therapeutic potential, but their deployment has been hindered in part because the mode of action remains obscure. Here we provide mechanistic insight into how the dehydroabiet...

متن کامل

pH-regulated Slo3 K+ Channels: Properties of Unitary Currents

Here we have examined the voltage and pH dependence of unitary Slo3 channels and used analysis of current variance to define Slo3 unitary current properties over a broader range of voltages. Despite complexity in Slo3 channel openings that precludes simple definition of the unitary conductance, average current through single Slo3 channels varies linearly with voltage at positive activation pote...

متن کامل

Heme Regulates Allosteric Activation of the Slo1 BK Channel

Large conductance calcium-dependent (Slo1 BK) channels are allosterically activated by membrane depolarization and divalent cations, and possess a rich modulatory repertoire. Recently, intracellular heme has been identified as a potent regulator of Slo1 BK channels (Tang, X.D., R. Xu, M.F. Reynolds, M.L. Garcia, S.H. Heinemann, and T. Hoshi. 2003. Nature. 425:531-535). Here we investigated the ...

متن کامل

Jgp_201711845 985..1008

985 Introduction Despite the ability of ion channel biophysics to provide insightful inferences regarding structural features of a given ion channel, those invested in biophysical approaches eagerly await each advance in structural information, hoping to gain clarity or validation regarding functional questions or to identify new directions to better probe and understand function. One such chan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 110 41  شماره 

صفحات  -

تاریخ انتشار 2013