Modulation of inhibitory synaptic potentials in the piriform cortex.

نویسندگان

  • M M Patil
  • M E Hasselmo
چکیده

Modulation of inhibitory synaptic potentials in the piriform cortex. Intracellular recordings from pyramidal neurons in brain slice preparations of the piriform cortex were used to test results from a computational model about the effects of cholinergic agonists on inhibitory synaptic potentials induced by stimulation of afferent fibers in layer Ia and association/intrinsic fibers in layer Ib. A simple model of piriform cortex as an associative memory was used to analyze how suppression of inhibitory synaptic transmission influenced performance of the network. Levels of suppression of excitatory synaptic transmission were set at levels determined in previous experimental work. Levels of suppression of inhibitory synaptic transmission were then systematically varied within the model. This modeling work demonstrated that suppression of inhibitory synaptic transmission in layer Ib should be stronger than suppression of inhibitory synaptic transmission in layer Ia to keep activity levels high enough for effective storage. Experimental data showed that perfusion of the cholinergic agonist carbachol caused a significant suppression of inhibitory postsynaptic potentials (IPSPs) in the pyramidal neurons that were induced by stimulation of layer Ib, with a weaker effect on IPSPs induced by stimulation of layer Ia. As previously described, carbachol also selectively suppressed excitatory postsynaptic potentials (EPSPs) elicited by intrinsic but not afferent fiber stimulation. The decrease in amplitude of IPSPs induced by layer Ib stimulation did not appear to be directly related to the decrease in EPSP amplitude induced by layer Ib stimulation. The stimulation necessary to induce neuronal firing with layer Ia stimulation was reduced in the presence of carbachol, whereas that necessary to induce neuronal firing with layer Ib stimulation was increased, despite the depolarization of resting membrane potential. Thus physiological data on cholinergic modulation of inhibitory synaptic potentials in the piriform cortex is compatible with the functional requirements determined from computational models of piriform cortex associative memory function.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Physiological expression of olfactory discrimination rule learning balances whole‐population modulation and circuit stability in the piriform cortex network

Once trained, rats are able to execute particularly difficult olfactory discrimination tasks with exceptional accuracy. Such skill acquisition, termed "rule learning", is accompanied by a series of long-lasting modifications to three cellular properties which modulate pyramidal neuron activity in piriform cortex; intrinsic excitability, synaptic excitation, and synaptic inhibition. Here, we exp...

متن کامل

Developmental changes in presynaptic muscarinic modulation of excitatory and inhibitory neurotransmission in rat piriform cortex in vitro: relevance to epileptiform bursting susceptibility.

Suppression of depolarizing postsynaptic potentials and isolated GABA-A receptor-mediated fast inhibitory postsynaptic potentials by the muscarinic acetylcholine receptor agonist, oxotremorine-M (10 microM), was investigated in adult and immature (P14-P30) rat piriform cortical (PC) slices using intracellular recording. Depolarizing postsynaptic potentials evoked by layers II-III stimulation un...

متن کامل

Mechanisms underlying rule learning-induced enhancement of excitatory and inhibitory synaptic transmission.

Training rats to perform rapidly and efficiently in an olfactory discrimination task results in robust enhancement of excitatory and inhibitory synaptic connectivity in the rat piriform cortex, which is maintained for days after training. To explore the mechanisms by which such synaptic enhancement occurs, we recorded spontaneous miniature excitatory and inhibitory synaptic events in identified...

متن کامل

Neuromodulation and the functional dynamics of piriform cortex.

Acetylcholine and norepinephrine have a number of effects at the cellular level in the piriform cortex. Acetylcholine causes a depolarization of the membrane potential of pyramidal cells and interneurons, and suppresses the action potential frequency accommodation of pyramidal cells. Acetylcholine also has strong effects on synaptic transmission, suppressing both excitatory and inhibitory synap...

متن کامل

Learning-induced enhancement of feedback inhibitory synaptic transmission.

Olfactory-discrimination learning results with a series of intrinsic and excitatory synaptic modifications in piriform cortex pyramidal neurons. Here we show that such learning results with long-lasting enhancement of inhibitory synaptic transmission onto proximal dendrites of these pyramidal neurons. Such enhancement is mediated by a strong hyperpolarizing shift in the reversal potential of fa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 81 5  شماره 

صفحات  -

تاریخ انتشار 1999