CtBP1 over-expression in keratinocytes perturbs skin homeostasis
نویسندگان
چکیده
Carboxyl-terminal-binding protein-1 (CtBP1) is a transcriptional corepressor with multiple in vitro targets, but its in vivo functions are largely unknown. We generated keratinocyte-specific CtBP1 transgenic mice with a keratin-5 promoter (K5.CtBP1) to probe the pathological roles of CtBP1. At transgene expression levels comparable to endogenous CtBP1 in acute skin wounds, the K5.CtBP1 epidermis displayed hyperproliferation, loss of E-cadherin, and failed terminal differentiation. Known CtBP1 target genes associated with these processes, e.g., p21, Brca1, and E-cadherin, were downregulated in K5.CtBP1 skin. Surprisingly, K5.CtBP1 pups also exhibited a hair loss phenotype. We found that expression of the Distal-less 3 (Dlx3), a critical regulator of hair follicle differentiation and cycling, was decreased in K5.CtBP1 mice. Molecular studies revealed that CtBP1 directly suppressed Dlx3 transcription. Consistently, K5.CtBP1 mice displayed abnormal hair follicles with decreased expression of Dlx3 downstream targets Gata3, Hoxc13, and hair keratins. In summary, this CtBP1 transgenic model provides in vivo evidence for certain CtBP1 functions predicted from in vitro studies, reveals--to our knowledge--previously unreported functions and transcriptional activities of CtBP1 in the context of epithelial-mesenchymal interplay, and suggests that CtBP1 has a pathogenic role in hair follicle morphogenesis and differentiation.
منابع مشابه
Inactivation of mitogen-activated protein kinase signaling pathway reduces caspase-14 expression in impaired keratinocytes
Objective(s):Several investigations have revealed that caspase-14 is responsible for the epidermal differentiation and cornification, as well as the regulation of moisturizing effect. However, the precise regulation mechanism is still not clear. This study was aimed to investigate the expression of caspase-14 in filaggrin-deficient normal human epidermal keratinocytes (NHEKs) and to explore the...
متن کاملAn expression screen for aged-dependent microRNAs identifies miR-30a as a key regulator of aging features in human epidermis
The mechanisms affecting epidermal homeostasis during aging remain poorly understood. To identify age-related microRNAs, a class of non-coding RNAs known to play a key role in the regulation of epidermal homeostasis, an exhaustive miRNA expression screen was performed in human keratinocytes from young or elderly subjects. Many microRNAs modulated by aging were identified, including miR-30a, in ...
متن کاملRegulation of epidermal homeostasis and repair by phosphoinositide 3-kinase.
The epidermis undergoes continuous self-renewal to maintain its protective function. Whereas growth factors are known to modulate overall skin homeostasis, the intracellular signaling pathways, which control the delicate balance between proliferation and differentiation in keratinocytes, are largely unknown. Here we show transient upregulation of the phosphoinositide 3-kinase (PI3K) catalytic s...
متن کاملDysfunctional γδ T cells contribute to impaired keratinocyte homeostasis in mouse models of obesity
Skin complications and chronic non-healing wounds are common in obesity, metabolic disease, and type 2 diabetes. Epidermal γδ T cells normally produce keratinocyte growth factors, participate in wound repair, and are necessary for keratinocyte homeostasis. We have determined that in γδ T cell-deficient mice, there are reduced numbers of keratinocytes and the epidermis exhibits a flattened, thin...
متن کاملFibroblast growth factor receptors 1 and 2 in keratinocytes control the epidermal barrier and cutaneous homeostasis
Fibroblast growth factors (FGFs) are master regulators of organogenesis and tissue homeostasis. In this study, we used different combinations of FGF receptor (FGFR)-deficient mice to unravel their functions in the skin. Loss of the IIIb splice variants of FGFR1 and FGFR2 in keratinocytes caused progressive loss of skin appendages, cutaneous inflammation, keratinocyte hyperproliferation, and aca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 134 شماره
صفحات -
تاریخ انتشار 2014