Combining Two Search Paradigms for Multi-objective Optimization: Two-Phase and Pareto Local Search
نویسندگان
چکیده
In this chapter, we review metaheuristics for solving multi-objective combinatorial optimization problems, when no information about the decision maker’s preferences is available, that is, when problems are tackled in the sense of Pareto optimization. Most of these metaheuristics follow one of the two main paradigms to tackle such problems in a heuristic way. The first paradigm is to rely on Pareto dominance when exploring the search space. The second paradigm is to tackle several single-objective problems to find several solutions that are non-dominated for the original problem; in this case, one may exploit existing, efficient single-objective algorithms, but the performance depends on the definition of the set of scalarized problems. There are also a number of approaches in the literature that combine both paradigms. However, this is usually done in a relatively ad-hoc way. In this chapter, we review two conceptually simple methods representative of each paradigm: Pareto local search and Two-phase local search. The hybridization of these two strategies provides a general framework for engineering stochastic local search algorithms that can be used to improve over the state-of-the-art for several, widely studied problems.
منابع مشابه
Pareto-optimal Solutions for Multi-objective Optimal Control Problems using Hybrid IWO/PSO Algorithm
Heuristic optimization provides a robust and efficient approach for extracting approximate solutions of multi-objective problems because of their capability to evolve a set of non-dominated solutions distributed along the Pareto frontier. The convergence rate and suitable diversity of solutions are of great importance for multi-objective evolutionary algorithms. The focu...
متن کاملPareto Adaptive Decomposition algorithm
Dealing with multi-objective combinatorial optimization and local search, this article proposes a new multi-objective meta-heuristic named Pareto Adaptive Decomposition algorithm (PAD). Combining ideas from decomposition methods, two phase algorithms and multi-armed bandit, PAD provides a 2-phase modular framework for finding an approximation of the Pareto front. The first phase decomposes the ...
متن کاملDYNAMIC PERFORMANCE OPTIMIZATION OF TRUSS STRUCTURES BASED ON AN IMPROVED MULTI-OBJECTIVE GROUP SEARCH OPTIMIZER
This paper presents an improved multi-objective group search optimizer (IMGSO) that is based on Pareto theory that is designed to handle multi-objective optimization problems. The optimizer includes improvements in three areas: the transition-feasible region is used to address constraints, the Dealer’s Principle is used to construct the non-dominated set, and the producer is updated using a tab...
متن کاملOptimization of Thermal Instability Resistance of FG Flat Structures using an Improved Multi-objective Harmony Search Algorithm
This paper presents a clear monograph on the optimization of thermal instability resistance of the FG (functionally graded) flat structures. For this aim, two FG flat structures, namely an FG beam and an FG circular plate, are considered. These structures are assumed to obey the first-order shear deformation theory, three-parameters power-law distribution of the constituents, and clamped bounda...
متن کاملPerturbed Decomposition Algorithm applied to the multi-objective Traveling Salesman Problem
Dealing with multi-objective combinatorial optimization, this article proposes a new multi-objective set-based metaheuristic named Perturbed Decomposition Algorithm (PDA). Combining ideas from decomposition methods, local search and data perturbation, PDA provides a 2-phase modular framework for finding an approximation of the Pareto front. The first phase decomposes the search into a number of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013