Learning Mixtures of Tree Graphical Models

نویسندگان

  • Anima Anandkumar
  • Daniel J. Hsu
  • Furong Huang
  • Sham M. Kakade
چکیده

We consider unsupervised estimation of mixtures of discrete graphical models, where the class variable is hidden and each mixture component can have a potentially different Markov graph structure and parameters over the observed variables. We propose a novel method for estimating the mixture components with provable guarantees. Our output is a tree-mixture model which serves as a good approximation to the underlying graphical model mixture. The sample and computational requirements for our method scale as poly(p, r), for an r-component mixture of pvariate graphical models, for a wide class of models which includes tree mixtures and mixtures over bounded degree graphs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning High-Dimensional Mixtures of Graphical Models

We consider unsupervised estimation of mixtures of discrete graphical models, where the class variable corresponding to the mixture components is hidden and each mixture component over the observed variables can have a potentially different Markov graph structure and parameters. We propose a novel approach for estimating the mixture components, and our output is a tree-mixture model which serve...

متن کامل

Learning with Mixtures of Trees

One of the challenges of density estimation as it is used in machine learning is that usually the data are multivariate and often the dimensionality is large. Operating with joint distributions over multidimensional domains raises specific problems that are not encountered in the univariate case. Graphical models are representations of joint densities that are specifically tailored to address t...

متن کامل

Learning Tractable Graphical Models Using Mixture of Arithmetic Circuits

In recent years, there has been a growing interest in learning tractable graphical models in which exact inference is efficient. Two main approaches are to restrict the inference complexity directly, as done by low-treewidth graphical models and arithmetic circuits (ACs), or introduce latent variables, as done by mixtures of trees, latent tree models, and sum-product networks (SPNs). In this pa...

متن کامل

Learning Accurate Cutset Networks by Exploiting Decomposability

The rising interest around tractable Probabilistic Graphical Models is due to the guarantees on inference feasibility they provide. Among them, Cutset Networks (CNets) have recently been introduced as models embedding Pearl’s cutset conditioning algorithm in the form of weighted probabilistic model trees with tree-structured models as leaves. Learning the structure of CNets has been tackled as ...

متن کامل

Mixtures of Tree-Structured Probabilistic Graphical Models for Density Estimation in High Dimensional Spaces

Probabilistic graphical models reduce the number of parameters necessary to encode a joint probability distribution by exploiting independence relationships between variables. However, using those models is challenging when there are thousands of variables or more. First, both learning these models from a set of observations and exploiting them is computationally problematic. Second, the number...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012