Least Squares and Chaotic Behavior in Initial Value Problems
نویسندگان
چکیده
We describe an unconventional method for treating initial value problems. The system of differential equations is discretized on a fixed interval, the initial value is left unspecified, and the underdetermined system is solved by a least squares minimization procedure. When applied to the celebrated Lorenz equations, it produces a simple smooth curve that terminates at a stationary point rather than producing the ‘butterfly’ attractor. As far as we know this is the first method that produces a non-chaotic orbit.
منابع مشابه
Least Squares Shadowing sensitivity analysis of chaotic limit cycle oscillations
The adjoint method, among other sensitivity analysis methods, can fail in chaotic dynamical systems. The result from these methods can be too large, often by orders of magnitude, when the result is the derivative of a long time averaged quantity. This failure is known to be caused by ill-conditioned initial value problems. This paper overcomes this failure by replacing the initial value problem...
متن کاملOptimal Pareto Parametric Analysis of Two Dimensional Steady-State Heat Conduction Problems by MLPG Method
Numerical solutions obtained by the Meshless Local Petrov-Galerkin (MLPG) method are presented for two dimensional steady-state heat conduction problems. The MLPG method is a truly meshless approach, and neither the nodal connectivity nor the background mesh is required for solving the initial-boundary-value problem. The penalty method is adopted to efficiently enforce the essential boundary co...
متن کاملExact and approximate solutions of fuzzy LR linear systems: New algorithms using a least squares model and the ABS approach
We present a methodology for characterization and an approach for computing the solutions of fuzzy linear systems with LR fuzzy variables. As solutions, notions of exact and approximate solutions are considered. We transform the fuzzy linear system into a corresponding linear crisp system and a constrained least squares problem. If the corresponding crisp system is incompatible, then the fuzzy ...
متن کاملاستفاده از POD در استخراج ساختارهای متجانس یک میدان آشفته آماری- همگن
Capability of the Proper Orthogonal Decomposition (POD) method in extraction of the coherent structures from a spatio-temporal chaotic field is assessed in this paper. As the chaotic field, an ensemble of 40 snapshots, obtained from Direct Numerical Simulation (DNS) of the Kuramoto-Sivashinsky (KS) equation, has been used. Contrary to the usual methods, where the ergodicity of the field is need...
متن کاملSensitivity Analysis of Chaotic Problems using a Fourier Approximation of the Least-Squares Adjoint
In general, chaotic dynamical systems produce ill-conditioned direct and adjoint sensitivity equations, so these conventional sensitivity analysis methods do not provide useful derivatives for design optimization of chaotic systems. The least-squares shadowing (LSS) method is a recently proposed regularization of the sensitivity equations that leads to useful derivative information; however, th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004