Isolation of Live Premature Senescent Cells Using FUCCI Technology

نویسندگان

  • Danli Wang
  • Ping Lu
  • Yang Liu
  • Li Chen
  • Rui Zhang
  • Weihao Sui
  • Alexandru George Dumitru
  • Xiaowen Chen
  • Feiqiu Wen
  • Hong-Wei Ouyang
  • Junfeng Ji
چکیده

Cellular senescence plays an important role in diverse biological processes such as tumorigenesis and organismal aging. However, lack of methods to specifically identify and isolate live senescent cells hampers the precise understanding of the molecular mechanisms regulating cellular senescence. Here, we report that utilization of fluorescent ubiquitination-based cell cycle indicator (FUCCI) technology allows isolation of live premature senescent cells induced by doxorubicin treatment. Exposure of human foreskin fibroblasts (HFFs) to a low dose of doxorubicin led to cellular senescent phenotypes including formation of γ-H2AX and 53BP1 foci indicative of DNA damage, decreased cell proliferation and increased senescence-associated β-galactosidase (SA-β-gal) activity. Importantly, doxorubicin-induced senescent cells were arrested at S/G2/M phases of cell cycle which can be reported by a construct encoding a fragment of hGeminin fused with monomeric Azami-Green (mAG-hGeminin). Flow cytometric sorting of GFP(+) cells from doxorubicin-treated HFFs carrying mAG-hGeminin reporter enabled isolation and enrichment of live senescent cells in the culture. Our study develops a novel method to identify and isolate live premature senescent cells, thereby providing a new tool to study cellular senescence.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Growth Kinetics and in Vitro Aging of Mesenchymal Stem Cells Isolated From Rat Adipose Versus Bone Marrow Tissues

Objective- To investigate and compare growth potential as well as aging of mesenchymal stem cells (MSCs) derived from rat bone marrow tissue and adipose tissue (AT) occurred at epicardial and epididymal regions. Design- Experimental study.   Animals- 10 Wistar Rats.   Procedures- Rat MSCs occurred at bone marrow and epicardial and epididymal AT were isolated and culture expanded through sev...

متن کامل

Visualization of cell cycle in mouse embryos with Fucci2 reporter directed by Rosa26 promoter.

Fucci technology makes possible the distinction between live cells in the G(1) and S/G(2)/M phases by dual-color imaging. This technology relies upon ubiquitylation-mediated proteolysis, and transgenic mice expressing Fucci provide a powerful model system with which to study the coordination of the cell cycle and development. The mice were initially generated using the CAG promoter; lines expre...

متن کامل

Radiosensitivity of quiescent and proliferating cells grown as multicellular tumor spheroids

The multicellular spheroid model partly mimics tumor microenvironments in vivo and has been reported in plenty of studies regarding radiosensitivity. However, clear isolation of quiescent and proliferating cells in live conditions has been quite difficult owing to technical limitations; therefore, comprehensive characterization could not be done thus far. In this study, we succeeded in separate...

متن کامل

Fluorescence kinetics in HeLa cells after treatment with cell cycle arrest inducers visualized with Fucci (fluorescent ubiquitination-based cell cycle indicator).

Fucci (fluorescent ubiquitination-based cell cycle indicator) is able to visualize dynamics of cell cycle progression in live cells; G1- and S-/G2-/M-phase cells expressing Fucci emit red and green fluorescence, respectively. This system could be applied to cell kinetic analysis of tumour cells in the field of cancer therapy; however, it is still unclear how fluorescence kinetics change after v...

متن کامل

Senescence chips for ultrahigh‐throughput isolation and removal of senescent cells

Cellular senescence plays an important role in organismal aging and age-related diseases. However, it is challenging to isolate low numbers of senescent cells from small volumes of biofluids for downstream analysis. Furthermore, there is no technology that could selectively remove senescent cells in a high-throughput manner. In this work, we developed a novel microfluidic chip platform, termed ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016