Efficient Road Mapping via Interactive Image Segmentation

نویسنده

  • O. Barinova
چکیده

Last years witnessed the growth of demand for road monitoring systems based on image or video analysis. These systems usually consist of a survey vehicle equipped with photo and video cameras, laser scanners and other instruments. Sensors mounted on the van collect different types of data while the vehicle goes along the road. Recorded video can be geographically referenced with the help of global positioning systems. Road monitoring systems require special software for data processing. This paper addresses the problem of video analysis automation, and particularly the pavement monitoring functionality of such mobile laboratories. We show that computer vision methods applied to this problem help to reduce amount of manual labour during data analysis. Our method transforms video collected by mobile laboratory into rectified geo-referenced images of road pavement surface, and allows mapping of lane marking and road pavement defects with minimum user interaction. In our work the mapping workflow consists of two stages: off-line and online stage. In order to reduce user effort during error correction we take advantage of hierarchical image segmentation, which helps to delete false detections or mark missing objects with just a few clicks. Through continuous training of detection algorithm with the help of operator input error rate of automatic detection decreases; thus minimal input is required for accurate mapping. Experiments on real-world road data show effectiveness of our approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Object-Oriented Method for Automatic Extraction of Road from High Resolution Satellite Images

As the information carried in a high spatial resolution image is not represented by single pixels but by meaningful image objects, which include the association of multiple pixels and their mutual relations, the object based method has become one of the most commonly used strategies for the processing of high resolution imagery. This processing comprises two fundamental and critical steps towar...

متن کامل

Learning to Merge: A New Tool for Interactive Mapping

The task of turning raw imagery into semantically meaningful maps and overlays is a key area of remote sensing activity. Image analysts, in applications ranging from environmental monitoring to intelligence, use imagery to generate and update maps of terrain, vegetation, road networks, buildings and other relevant features. Often these tasks can be cast as a pixel labeling problem, and several ...

متن کامل

Improving Brain Magnetic Resonance Image (MRI) Segmentation via a Novel Algorithm based on Genetic and Regional Growth

Background: Regarding the importance of right diagnosis in medical applications, various methods have been exploited for processing medical images solar. The method of segmentation is used to analyze anal to miscall structures in medical imaging.Objective: This study describes a new method for brain Magnetic Resonance Image (MRI) segmentation via a novel algorithm based on genetic and regiona...

متن کامل

Automatic road crack detection and classification using image processing techniques, machine learning and integrated models in urban areas: A novel image binarization technique

The quality of the road pavement has always been one of the major concerns for governments around the world. Cracks in the asphalt are one of the most common road tensions that generally threaten the safety of roads and highways. In recent years, automated inspection methods such as image and video processing have been considered due to the high cost and error of manual metho...

متن کامل

Interactive Image Segmentation via Graph Clustering and Synthetic Coordinates Modeling

We propose a method for interactive image segmentation. We construct a weighted graph that represents the superpixels and the connections between them. An efficient algorithm for graph clustering based on synthetic coordinates is used yielding an initial map of classified pixels. The proposed method minimizes a min-max Bayesian criterion that has been successfully used on image segmentation pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009