How cancellous and cortical bones adapt to loading and growth hormone.

نویسندگان

  • D N Kalu
  • J Banu
  • L Wang
چکیده

There is great interest in the relationships between growth hormone (GH), muscle loading and bone, in part, because GH increases muscle mass which provides the largest signals that control bone modeling and remodeling. This study was designed to examine the effects of GH and muscle loading by exercise (EX) independently and in combination on bone and skeletal muscle. Thirteen-month-old female F344 rats were divided into 6 groups: Group 1, baseline controls (B); Group 2, agematched controls (C); Group 3, GH treated (2.5 mg rhGH/kg b. wt/day, 5 days per week); Group 4, voluntary wheel running exercise (EX); Group 5, GH+EX, and rats in Group 6 were food restricted (FR) to lower their body weight and examine the effects of decreased muscle load on bone. All animals, except the baseline controls, were sacrificed after 4.5 months. Growth hormone increased the body weight and tibial muscle mass of the rats markedly, while EX caused a slight decrease in body weight and partially inhibited the increase caused by GH in the GH+EX group. Food restriction greatly decreased body weight below that of age-matched controls but neither FR nor EX had a significant effect on the mass of the muscles around the tibia. Growth hormone and EX independently increased tibial diaphyseal cortical bone area (p<0.0001), cortical thickness (p<0.0001), cortical bone mineral content (p<0.0001), periosteal perimeter (p<0.0001) and bone strength-strain index (SSI) (p<0.0001). The effects of GH were more marked, and the combination of GH and EX produced additive effects on many of the tibial diaphyseal parameters including bone SSI. GH+EX, but not GH or EX alone caused a significant increase in endocortical perimeter (p<0.0001). In the FR rats, cortical bone area and cortical mineral content increased above the baseline level (p<0.0001) but were below the levels for age-matched controls (p<0.0001). In addition, marrow area, endocortical perimeter and endocortical bone formation rate increased significantly in the FR rats (p<0.01, p<0.0001, p<0.0001). Three-point bending test of right tibial diaphysis resulted in maximum force (Fmax) values that reflected the group differences in indices of tibial diaphyseal bone mass except that GH+EX did not produce additive effect on Fmax. The latter showed good correlation with left tibial diaphyseal SSI (r=0.857, p<0.0001) and both indices of bone strength correlated well with tibial muscle mass (r=0.771, Fmax; r=0.700, SSI; p<0.0001). We conclude that the bone anabolic effects of GH with or without EX may relate, in part, to increased load on bone from tibial muscles and body weight, which were increased by the hormone. The osteogenic effects of EX with or without GH may relate, in part, to increased frequency of muscle load on bone as EX decreased body weight (p<0.05) but had no significant effect on tibial muscle mass. The enhanced loss of endocortical bone by FR may relate, in part, to decreased load on bone due to low body weight (p<0.0001) as FR did not cause a significant decrease in tibial muscle mass (p=0.357). The roles of humoral and local factors in the bone changes observed remain to be established.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization of bone growth and remodeling in response to loading in tapered mammalian limbs.

How bones respond dynamically to mechanical loading through changes in shape and structure is poorly understood, particularly with respect to variations between bones. Structurally, cortical bones adapt in vivo to their mechanical environments primarily by modulating two processes, modeling and Haversian remodeling. Modeling, defined here as the addition of new bone, may occur in response to me...

متن کامل

Estrogen receptors α and β have different gender-dependent effects on the adaptive responses to load bearing in cancellous and cortical bone.

To determine the effect of estrogen receptors (ER) α and β on bones' adaptive response to loading, we subjected the right tibiae of mice lacking ERα or ERβ activity to either axial loading or to disuse. Adaptive changes in architecture were assessed by comparing differences between the right (treated) and left (control) tibiae in these genotypes as assessed by microcomputed tomography. In femal...

متن کامل

Parathyroid hormone's enhancement of bones' osteogenic response to loading is affected by ageing in a dose- and time-dependent manner

Decreased effectiveness of bones' adaptive response to mechanical loading contributes to age-related bone loss. In young mice, intermittent administration of parathyroid hormone (iPTH) at 20-80μg/kg/day interacts synergistically with artificially applied loading to increase bone mass. Here we report investigations on the effect of different doses and duration of iPTH treatment on mice whose ost...

متن کامل

Variation in estradiol level affects cortical bone growth in response to mechanical loading in sheep.

Although mechanical loading can stimulate cortical bone growth, little is known about how individual physiology affects this response. This study demonstrates that in vivo variation in estradiol (E2) level alters osteoblast sensitivity to exercise-induced strains, affecting cortical bone responses to mechanical loading. Subadult sheep were divided into treatment groups that varied in terms of c...

متن کامل

Characterization of cancellous and cortical bone strain in the in vivo mouse tibial loading model using microCT-based finite element analysis.

The in vivo mouse tibial loading model has been increasingly used to understand the mechanisms governing the mechanobiological responses of cancellous and cortical bone tissues to physical stimuli. Accurate characterization of the strain environment throughout the tibia is fundamental in relating localized mechanobiological processes to specific strain stimuli in the skeleton. MicroCT-based fin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of musculoskeletal & neuronal interactions

دوره 1 1  شماره 

صفحات  -

تاریخ انتشار 2000