High-Resolution Simulation of Turbulent Collision of Cloud Droplets
نویسندگان
چکیده
A novel parallel implementation of hybrid DNS (Direct Numerical Simulation) code for simulating collision-coalescence of aerodynamically interacting particles in a turbulent flow has been developed. An important application of this code is to quantify turbulent collisioncoalescence rate of cloud droplets, relevant to warm rain formation, under physically realistic conditions. The code enables performing highresolution DNS of turbulent collisions so the simulation results can be used to begin addressing the question of Reynolds number dependence of pair and collision statistics. The new implementation is based on MPI (Message Passing Interface) library, and thus the code can run on computers with distributed memory. This development enables to conduct hybrid DNS with flow field solved at grid resolutions up to 512 while simultaneously track up to several million aerodynamically-interacting droplets. In this paper we discuss key elements of the MPI implementation and present preliminary results from the high resolution simulations. The key conclusion is that, for small cloud droplets, the results on pair statistics and collision kernel appear to reach their saturation values as the flow Reynolds number is increased.
منابع مشابه
Turbulent collision efficiency of heavy particles relevant to cloud droplets
The collision efficiency of sedimenting cloud droplets in a turbulent air flow is a key input parameter in predicting the growth of cloud droplets by collision–coalescence. In this study, turbulent collision efficiency was directly computed, using a hybrid direct numerical simulation (HDNS) approach (Ayala et al 2007 J. Comput. Phys. 225 51–73). The HDNS results show that air turbulence enhance...
متن کاملResolving Implementation Issues in the Hybrid Simulation of Turbulent Collision of Cloud Droplets
Collision-coalescence of cloud droplets in a turbulent air flow is an essential step for warm rain precipitation, therefore, the parameterization of turbulent collisioncoalescence rate of cloud droplets is central to the modeling of cloud dynamics in particular and to weather prediction in general. In the last few years, we have developed a hybrid direct numerical simulation approach (Ayala et ...
متن کاملParametric Study of Fuel Vapor Concentration Distribution Due to Vaporization of Fuel Droplets in Free Atmosphere
The growth of a two-phase cloud of a liquid fuel in a stagnant atmosphere is studied using computational fluid dynamic techniques. In order to predict the danger and hazard of such cloud in open atmosphere it is very important to determine the fuel concentration in the cloud, especially in the far field region from the fuel reservoir. The results show that with omission of droplets break up...
متن کاملGrowth of Cloud Droplets by Turbulent Collision–Coalescence
An open question in cloud physics is how rain forms in warm cumulus as rapidly as it is sometimes observed. In particular, the growth of cloud droplets across the size gap from 10 to 50 m in radius has not been fully explained. In this paper, the authors investigate the growth of cloud droplets by collision– coalescence, taking into account both the gravitational mechanism and several enhanceme...
متن کاملStochastic effects of cloud droplet hydrodynamic interaction in a turbulent flow
The collision efficiencies of small cloud droplets are calculated in a turbulent flow. A flow w velocity field was generated using a model of isotropic turbulence Pinsky, M.B., Khain, A.P., 1995. A model of homogeneous isotropic turbulence flow and its application for simulation of cloud drop tracks. Geophys. Astrophys. Fluid Dyn. 81, 33–55; Pinsky, M.B., Khain, A.P., 1996. x Simulations of dro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011