Efficient semantic indexing via neural networks with dynamic supervised feedback
نویسنده
چکیده
We describe a portable system for e cient semantic indexing of documents via neural networks with dynamic supervised feedback. We initially represent each document as a modified TF-IDF sparse vector and then apply a learned mapping to a compact embedding space. This mapping is produced by a shallow neural network which learns a latent representation for the textual graph linking words to nearby contexts. The resulting document embeddings provide significantly better semantic representation, partly because they incorporate information about synonyms. Query topics are uniformly represented in the same manner as documents. For each query, we dynamically train an additional hidden layer which modifies the embedding space in response to relevance judgements. The system was tested using the documents and topics provided in the Total Recall track.
منابع مشابه
Presentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures
Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...
متن کاملPresentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures
Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...
متن کاملMarkovian Bias of Neural-based Architectures With Feedback Connections
Dynamic neural network architectures can deal naturally with sequential data through recursive processing enabled by feedback connections. We show how such architectures are predisposed for suffix-based Markovian input sequence representations in both supervised and unsupervised learning scenarios. In particular, in the context of such architectural predispositions, we study computational and l...
متن کاملSupervised learning of perceptron and output feedback dynamic networks: a feedback analysis via the small gain theorem
This paper provides a time-domain feedback analysis of the perceptron learning algorithm and of training schemes for dynamic networks with output feedback. It studies the robustness performance of the algorithms in the presence of uncertainties that might be due to noisy perturbations in the reference signals or due to modeling mismatch. In particular, bounds are established on the step-size pa...
متن کاملRobust Fault Detection on Boiler-turbine Unit Actuators Using Dynamic Neural Networks
Due to the important role of the boiler-turbine units in industries and electricity generation, it is important to diagnose different types of faults in different parts of boiler-turbine system. Different parts of a boiler-turbine system like the sensor or actuator or plant can be affected by various types of faults. In this paper, the effects of the occurrence of faults on the actuators are in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015