Complexity of Integral Equations and Relations to s-Numbers

نویسنده

  • Stefan Heinrich
چکیده

The complexity of computing a functional of the solution of a Fred-holm integral equation is studied. We show that the estimate of the information complexity is equivalent to that of Gelfand numbers of a certain mapping. Upper and lower estimates as well as open problems are discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complexity of Local Solution of Multivariate Integral Equations

In this paper the complexity of the local solution of Fredholm integral equations is studied. For certain Sobolev classes of multivariate periodic functions with dominating mixed derivative we prove matching lower and upper bounds. The lower bound is shown using relations to s-numbers. The upper bound is proved in a constructive way providing an implementable algorithm of optimal order based on...

متن کامل

A new method for solving two-dimensional fuzzy Fredholm integral equations of the second kind

In this work, we introduce a novel method for solving two-dimensional fuzzy Fredholm integral equations of the second kind (2D-FFIE-2). We use new representation of parametric form of fuzzy numbers and convert a two-dimensional fuzzy Fredholm integral equation to system of two-dimensional Fredholm integral equations of the second kind in crisp case. We can use Adomian decomposition method for n...

متن کامل

Existence and uniqueness of the solution of nonlinear fuzzy Volterra integral equations

In this paper the fixed point theorem of Schauder is used to prove the existence of a continuous solution of the nonlinear fuzzy Volterra integral equations. Then using some conditions the uniqueness of the solution is investigated.

متن کامل

Three Dimensional Analysis of Flow Past a Solid-Sphere at Low Reynolds Numbers with the Aid of Body Fitted Coordinates

In this paper, the flow-field of an incompressible viscous flow past a solid-sphere at low Reynolds numbers (up to 270) is investigated numerically. In order to extend the capabilities of the finite volume method, the boundary (body) fitted coordinates (BFC) method is used. Transformation of the partial differential equations to algebraic relations is based on the finite-volume method with coll...

متن کامل

Three Dimensional Analysis of Flow Past a Solid-Sphere at Low Reynolds Numbers with the Aid of Body Fitted Coordinates

In this paper, the flow-field of an incompressible viscous flow past a solid-sphere at low Reynolds numbers (up to 270) is investigated numerically. In order to extend the capabilities of the finite volume method, the boundary (body) fitted coordinates (BFC) method is used. Transformation of the partial differential equations to algebraic relations is based on the finite-volume method with coll...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Complexity

دوره 9  شماره 

صفحات  -

تاریخ انتشار 1993