SNP@lincTFBS: An Integrated Database of Polymorphisms in Human LincRNA Transcription Factor Binding Sites

نویسندگان

  • Shangwei Ning
  • Zuxianglan Zhao
  • Jingrun Ye
  • Peng Wang
  • Hui Zhi
  • Ronghong Li
  • Tingting Wang
  • Jianjian Wang
  • Lihua Wang
  • Xia Li
چکیده

Large intergenic non-coding RNAs (lincRNAs) are a new class of functional transcripts, and aberrant expression of lincRNAs was associated with several human diseases. The genetic variants in lincRNA transcription factor binding sites (TFBSs) can change lincRNA expression, thereby affecting the susceptibility to human diseases. To identify and annotate these functional candidates, we have developed a database SNP@lincTFBS, which is devoted to the exploration and annotation of single nucleotide polymorphisms (SNPs) in potential TFBSs of human lincRNAs. We identified 6,665 SNPs in 6,614 conserved TFBSs of 2,423 human lincRNAs. In addition, with ChIPSeq dataset, we identified 139,576 SNPs in 304,517 transcription factor peaks of 4,813 lincRNAs. We also performed comprehensive annotation for these SNPs using 1000 Genomes Project datasets across 11 populations. Moreover, one of the distinctive features of SNP@lincTFBS is the collection of disease-associated SNPs in the lincRNA TFBSs and SNPs in the TFBSs of disease-associated lincRNAs. The web interface enables both flexible data searches and downloads. Quick search can be query of lincRNA name, SNP identifier, or transcription factor name. SNP@lincTFBS provides significant advances in identification of disease-associated lincRNA variants and improved convenience to interpret the discrepant expression of lincRNAs. The SNP@lincTFBS database is available at http://bioinfo.hrbmu.edu.cn/SNP_lincTFBS.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SNP2TFBS – a database of regulatory SNPs affecting predicted transcription factor binding site affinity

SNP2TFBS is a computational resource intended to support researchers investigating the molecular mechanisms underlying regulatory variation in the human genome. The database essentially consists of a collection of text files providing specific annotations for human single nucleotide polymorphisms (SNPs), namely whether they are predicted to abolish, create or change the affinity of one or sever...

متن کامل

Bioinformatics Approach for Prediction of Functional Coding/Noncoding Simple Polymorphisms (SNPs/Indels) in Human BRAF Gene

This study was carried out for Homo sapiens single variation (SNPs/Indels) in BRAF gene through coding/non-coding regions. Variants data was obtained from database of SNP even last update of November, 2015. Many bioinformatics tools were used to identify functional SNPs and indels in proteins functions, structures and expressions. Results shown, for coding polymorphisms, 111 SNPs predicted as h...

متن کامل

LincSNP 2.0: an updated database for linking disease-associated SNPs to human long non-coding RNAs and their TFBSs

We describe LincSNP 2.0 (http://bioinfo.hrbmu.edu.cn/LincSNP), an updated database that is used specifically to store and annotate disease-associated single nucleotide polymorphisms (SNPs) in human long non-coding RNAs (lncRNAs) and their transcription factor binding sites (TFBSs). In LincSNP 2.0, we have updated the database with more data and several new features, including (i) expanding dise...

متن کامل

Identification of polymorphic antioxidant response elements in the human genome.

Single nucleotide polymorphisms (SNPs) in transcription factor binding sites (TFBSs) may affect the binding of transcription factors, lead to differences in gene expression and phenotypes and therefore affect susceptibility to environmental exposure. We developed an integrated computational system for discovering functional SNPs in TFBSs in the human genome and predicting their impact on the ex...

متن کامل

Mapping of Transcription Factor Binding Region of Kappa Casein (CSN3) Gene in Iranian Bacterianus and Dromedaries Camels

κ-casein is a glycosilated protein in mammalian milk that plays an essential role in the milk micelles. Control of κ-casein expression reflects this essential role, although an understanding of the mechanisms involved lags behind that of the other milk protein genes. Transcriptional regulation, a first mechanism for controlling the development of organisms, is carried out by transcription facto...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014