Parallel performance modeling of irregular applications in cell-centered finite volume methods over unstructured tetrahedral meshes

نویسندگان

  • Johannes Langguth
  • Nan Wu
  • Jun Chai
  • Xing Cai
چکیده

Finite volume methods are widely used numerical strategies for solving partial differential equations. This paper aims at obtaining a quantitative understanding of the achievable performance of the cell-centered finite volume method on 3D unstructured tetrahedral meshes, using traditional multicore CPUs as well as modern GPUs. By using an optimized implementation and a synthetic connectivity matrix that exhibits a perfect structure of equal-sized blocks lying on the main diagonal, we can closely relate the achievable computing performance to the size of these diagonal blocks. Moreover, we have derived a theoretical model for identifying characteristic levels of the attainable performance as function of hardware parameters, based on which a realistic upper limit of the performance can be predicted accurately. For real-world tetrahedral meshes, the key to high performance lies in a reordering of the tetrahedra, such that the resulting connectivity matrix resembles a block diagonal form where the optimal size of the blocks depends on the hardware. Numerical experiments confirm that the achieved performance is close to the practically attainable maximum and it reaches 75% of the theoretical upper limit, independent of the actual tetrahedral mesh considered. From this, we develop a general model capable of identifying bottleneck performance of a systems’ memory hierarchy in irregular applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Mass Conservative Method for Numerical Modeling of Axisymmetric flow

In this paper, the cell-centered finite volume method (CC-FVM) has been presented to simulate the axisymmetric radial flow toward a pumping well. The model is applied to the unstructured triangular grids which allows to simulate inhomogeneous and complex-shaped domains. Due to the non-orthogonality of the irregular grids, the multipoint flux approximation (MPFA) methods are used to discretize t...

متن کامل

Pressure-Velocity Coupled Finite Volume Solution of Steady Incompressible Invscid Flow Using Artificial Compressibility Technique

Application of the computer simulation for solving the incompressible flow problems motivates developing efficient and accurate numerical models. The set of Inviscid Incompressible Euler equations can be applied for wide range of engineering applications. For the steady state problems, the equation of continuity can be simultaneously solved with the equations of motion in a coupled manner using...

متن کامل

FORCE schemes on unstructured meshes I: Conservative hyperbolic systems

In this paper we propose a new high order accurate centered path-conservative method on unstructured triangular and tetrahedral meshes for the solution of multidimensional non-conservative hyperbolic systems, as they typically arise in the context of compressible multi-phase flows. Our path-conservative centered scheme is an extension of the centered method recently proposed in [36] for conserv...

متن کامل

FEMAG: A High Performance Parallel Finite Element Toolbox for Electromagnetic Computations

This paper presents a parallel finite element toolbox for computing large electromagnetic devices on unstructured tetrahedral meshes, FEMAG—Fem for ElectroMagnetics on Adaptive Grids. The finite element toolbox deals with unstructured tetrahedral meshes and can solve electromagnetic eddy current problems in both frequency domain and time domain. It adopts high-order edge element methods and ref...

متن کامل

Further Extension and Validation Of A Parallel Unstructured Mesh Adaptation Package

A parallel tetrahedral mesh adaptation code is expanded to treat general, mixed-element unstructured meshes comprised of any combination of basic element types. Emphasis is placed on developing conforming mesh modification methods that are solver-independent. Specific developments include the implementation of a treatment for viscous, high aspect ratio near wall tetrahedra, and cell subdivision...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Parallel Distrib. Comput.

دوره 76  شماره 

صفحات  -

تاریخ انتشار 2015