Stochastic simulation in systems biology
نویسندگان
چکیده
Natural systems are, almost by definition, heterogeneous: this can be either a boon or an obstacle to be overcome, depending on the situation. Traditionally, when constructing mathematical models of these systems, heterogeneity has typically been ignored, despite its critical role. However, in recent years, stochastic computational methods have become commonplace in science. They are able to appropriately account for heterogeneity; indeed, they are based around the premise that systems inherently contain at least one source of heterogeneity (namely, intrinsic heterogeneity). In this mini-review, we give a brief introduction to theoretical modelling and simulation in systems biology and discuss the three different sources of heterogeneity in natural systems. Our main topic is an overview of stochastic simulation methods in systems biology. There are many different types of stochastic methods. We focus on one group that has become especially popular in systems biology, biochemistry, chemistry and physics. These discrete-state stochastic methods do not follow individuals over time; rather they track only total populations. They also assume that the volume of interest is spatially homogeneous. We give an overview of these methods, with a discussion of the advantages and disadvantages of each, and suggest when each is more appropriate to use. We also include references to software implementations of them, so that beginners can quickly start using stochastic methods for practical problems of interest.
منابع مشابه
Application of Stochastic Programming to Determine Operating Reserves with Considering Wind and Load Uncertainties
Wind power generation is variable and uncertain. In the power systems with high penetration of wind power, determination of equivalent operating reserve is the main concern of systems operator. In this paper, a model is proposed to determine operating reserves in simultaneous market clearing of energy and reserve by stochastic programming based on scenarios generated via Monte Carlo simulation ...
متن کاملDelay-dependent robust stabilization and $H_{infty}$ control for uncertain stochastic T-S fuzzy systems with multiple time delays
In this paper, the problems of robust stabilization and$H_{infty}$ control for uncertain stochastic systems withmultiple time delays represented by the Takagi-Sugeno (T-S) fuzzymodel have been studied. By constructing a new Lyapunov-Krasovskiifunctional (LKF) and using the bounding techniques, sufficientconditions for the delay-dependent robust stabilization and $H_{infty}$ control scheme are p...
متن کاملTrain Scheduling Problem - Phase I: A General Simulation Modeling Framework
One of the important problems in management of railway systems is train scheduling problem. This is the problem of determining a timetable for a set of trains that do not violate infrastructure capacities and satisfies some operational constraints. In this study, a feasible timetable generator framework for stochastic simulation modeling is developed. The objective is to obtain a feasible tr...
متن کاملA High-Performance Multicompartment Stochastic Simulator for Executable Biology
In this paper we describe a high-performance multicompartment stochastic simulator called mcss which we have developed and are using to execute large-scale systems biology models. Our eventual goal is to be able to simulate multiscale systems biology models containing millions of compartments each of them hosting large biological regulatory networks. We show that mcss is able to accurately and ...
متن کاملDesign of Sliding mode control for stochastic systems subject to packet losses
In this paper, we examine the design of a sliding mode control for stochastic systems with data packet losses. It is assumed that there is a network connection in the system's feedback loop and that part of the information may be lost during transmission. The innovation of this paper is to peresent a new method with better performance In this paper, we first consider an estimated method to com...
متن کاملLoss of Load Expectation Assessment in Deregulated Power Systems Using Monte Carlo Simulation and Intelligent Systems
Deregulation policy has caused some changes in the concepts of power systems reliability assessment and enhancement. In this paper, generation reliability is considered, and a method for its assessment using intelligent systems is proposed. Also, because of power market and generators’ forced outages stochastic behavior, Monte Carlo Simulation is used for reliability evaluation. Generation r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2014