Partial Block by Riluzole of Muscle Sodium Channels in Myotubes from Amyotrophic Lateral Sclerosis Patients

نویسندگان

  • Cristina Deflorio
  • Emanuela Onesti
  • Clotilde Lauro
  • Giorgio Tartaglia
  • Aldo Giovannelli
  • Cristina Limatola
  • Maurizio Inghilleri
  • Francesca Grassi
چکیده

Denervated muscles undergo fibrillations due to spontaneous activation of voltage-gated sodium (Na(+)) channels generating action potentials. Fibrillations also occur in patients with amyotrophic lateral sclerosis (ALS). Riluzole, the only approved drug for ALS treatment, blocks voltage-gated Na(+) channels, but its effects on muscle Na(+) channels and fibrillations are yet poorly characterized. Using patch-clamp technique, we studied riluzole effect on Na(+) channels in cultured myotubes from ALS patients. Needle electromyography was used to study fibrillation potentials (Fibs) in ALS patients during riluzole treatment and after one week of suspension. Patients were clinically characterized in all recording sessions. In myotubes, riluzole (1 μM, a therapeutic concentration) reduced Na(+) current by 20%. The rate of rise and amplitude of spikes evoked by depolarizing stimuli were also reduced. Fibs were detected in all patients tested during riluzole treatment and riluzole washout had no univocal effect. Our study indicates that, in human myotubes, riluzole partially blocks Na(+) currents and affects action potentials but does not prevent firing. In line with this in vitro finding, muscle Fibs in ALS patients appear to be largely unaffected by riluzole.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Op-brai130085 1361..1370

Riluzole, a benzothiazole derivative, has been shown to be effective in prolonging survival in amyotrophic lateral sclerosis. The mechanisms by which riluzole exerts neuroprotective effects in amyotrophic lateral sclerosis remains to be fully elucidated, although inhibition of glutamatergic transmission and modulation of Na + channel function have been proposed. In an attempt to determine the m...

متن کامل

[Amyotrophic lateral sclerosis].

Amyotrophic lateral sclerosis is one of the most severe and disabling diseases of the nervous system. Amyotrophic lateral sclerosis leads to the progressive weakening of the muscles in the arms, legs, face, mouth and trunk. The onset of the disease is insidious, starting with weakness in the hands or feet or with slurred speech. The weakness worsens and patients pass away as a result of weaknes...

متن کامل

Commentary: Target Intestinal Microbiota to Alleviate Disease Progression in Amyotrophic Lateral Sclerosis

Amyotrophic lateral sclerosis (ALS), also called Lou Gehrig’s disease, is a neuromuscular disease characterized by a progressive death of motor neurons and muscle atrophy. Most ALS patients die within 5 years of disease onset. Currently, treatment with the US Food and Drug Administration (FDA) approved drug, Riluzole, merely extends the patient’s life span for a few months. For the second time ...

متن کامل

The Role of the Statistical Method of Motor Unit Number Estimation (MUNE) to Assess the Potential Therapeutic Benefits of Riluzole on Patients with Pre-symptomatic Familial Amyotrophic Lateral Sclerosis

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease which attacks the motor system. There is a family history in approximately 10% percent of cases and 20% of such families have point mutations in the Cu, Zn superoxide dimutase 1 (SOD1) gene. Pre-symp‐ tomatic loss of motor neurons has been identified prior to the onset of symptoms in SOD1 mice. This loss was biphasic with ...

متن کامل

Current Therapy of Drugs in Amyotrophic Lateral Sclerosis

Amyotrophic lateral sclerosis (ALS), commonly termed as motor neuron disease (MND) in UK, is a chronically lethal disorder among the neurodegenerative diseases, meanwhile. ALS is basically irreversible and progressive deterioration of upper and lower motor neurons in the motor cortex, brain stem and medulla spinalis. Riluzole, used for the treatment of ALS, was demonstrated to slightly delay th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014