Linear codes with covering radius R = 2, 3 and codimension tR
نویسندگان
چکیده
Let [ ] denote a linear code over with length , codimension , and covering radius . We use a modification of constructions of [2 +1 2 3] 2 and [3 +1 3 5] 3 codes ( 5) to produce infinite families of good codes with covering radius 2 and 3 and codimension .
منابع مشابه
New Bounds for Linear Codes of Covering Radius 2
The length function lq(r,R) is the smallest length of a q-ary linear code of covering radius R and codimension r. New upper bounds on lq(r, 2) are obtained for odd r ≥ 3. In particular, using the one-to-one correspondence between linear codes of covering radius 2 and saturating sets in the projective planes over finite fields, we prove that
متن کاملLinear codes with covering radius 3
The shortest possible length of a q-ary linear code of covering radius R and codimension r is called the length function and is denoted by q(r, R). Constructions of codes with covering radius 3 are here developed, which improve best known upper bounds on q(r, 3). General constructions are given and upper bounds on q(r, 3) for q = 3, 4, 5, 7 and r ≤ 24 are tabulated.
متن کاملNew Linear Codes with Covering Radius 2 and Odd Basis
On the way of generalizing recent results by Cock and the second author, it is shown that when the basis q is odd, BCH codes can be lengthened to obtain new codes with covering radius R = 2. These constructions (together with a lengthening construction by the first author) give new infinite families of linear covering codes with codimension r = 2k + 1 (the case q = 3, r = 4k + 1 was considered ...
متن کاملNew Quaternary Linear Codes with Covering Radius 21
A new quaternary linear code of length 19, codimension 5, and covering radius 2 is found in a computer search using tabu search, a local search heuristic. Starting from this code, which has some useful partitioning properties, di!erent lengthening constructions are applied to get an in"nite family of new, record-breaking quaternary codes of covering radius 2 and odd codimension. An algebraic co...
متن کاملConstructions and families of covering codes and saturated sets of points in projective geometry
In a recent paper by this author, constructions of linear binary covering codes are considered. In this work, constructions and techniques of the earlier paper are developed and modified for q-ary linear nonbinary covering codes, q 2 3, and new constructions are proposed. The described constructions design an infinite family of codes with covering radius R based on a starting code of the same c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IEEE Trans. Information Theory
دوره 47 شماره
صفحات -
تاریخ انتشار 2001