On Finite-dimensional Maps Ii H. Murat Tuncali and Vesko Valov

نویسنده

  • V. Valov
چکیده

Let f : X → Y be a perfect n-dimensional surjective map of paracompact spaces and Y a C-space. We consider the following property of continuous maps g : X → Ik = [0, 1], where 1 ≤ k ≤ ω: each g(f(y)), y ∈ Y , is at most n-dimensional. It is shown that all maps g ∈ C(X, In+1) with the above property form a dense Gδ-set in the function space C(X, I n+1 ) equipped with the source limitation topology. Moreover, for every n + 1 ≤ m ≤ ω the space C(X, Im) contains a dense Gδ-set of maps having this property.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Regularly Branched Maps Dedicated to Professor S. Nedev for His 60th Birthday H. Murat Tuncali and Vesko Valov

Let f : X → Y be a perfect map between finite-dimensional metrizable spaces and p ≥ 1. It is shown that the set of all f -regularly branched maps g ∈ C∗(X,R) contains a dense Gδ-subset of C∗(X,R) with the source limitation topology. Here, a map g : X → R is f -regularly branched if, for every n ≥ 1, the dimension of the set {z ∈ Y × R : |(f × g)−1(z)| ≥ n} is ≤ n · ( dim f + dimY ) − (n − 1) · (

متن کامل

On Dimensionally Restricted Maps H. Murat Tuncali and Vesko Valov

Let f : X → Y be a closed n-dimensional surjective map of metrizable spaces. It is shown that if Y is a C-space, then: (1) the set of all maps g : X → I n with dim(f × g) = 0 is uniformly dense in C(X, I n ); (2) for every 0 ≤ k ≤ n− 1 there exists an Fσ-subset Ak of X such that dimAk ≤ k and the restriction f |(X\Ak) is (n−k−1)-dimensional. These are extensions of theorems by Pasynkov and Toru...

متن کامل

Linear Operators with Compact Supports, Probability Measures and Milyutin Maps

The notion of a regular operator with compact supports between function spaces is introduced. On that base we obtain a characterization of absolute extensors for 0-dimensional spaces in terms of regular extension operators having compact supports. Milyutin maps are also considered and it is established that some topological properties, like paracompactness, metrizability and k-metrizability, ar...

متن کامل

Selections and Finite C - Spaces

Characterizations of paracompact finite C-spaces via continuous selections avoiding Zσ-sets are given. We apply these results to obtain some properties of finite C-spaces. Factorization theorems and a completion theorem for finite C-spaces are also proved.

متن کامل

Probability Measures and Milyutin Maps between Metric Spaces

We prove that the functor P̂ of Radon probability measures transforms any open map between completely metrizable spaces into a soft map. This result is applied to establish some properties of Milyutin maps between completely metrizable space.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002