Quasi-particle description for the transport through a small interacting system

نویسنده

  • Akira Oguri
چکیده

We study effects of electron correlation on the transport through a small interacting system connected to reservoirs using an effective Hamiltonian which describes the free quasi-particles of a Fermi liquid. The effective Hamiltonian is defined microscopically with the value of the self-energy at ω = 0. Specifically, we apply the method to a Hubbard chain of finite size N (= 1, 2, 3, . . .), and calculate the self-energy within the second order in U in the electron-hole symmetric case. When the couplings between the chain and the reservoirs on the left and right are small, the conductance for even N decreases with increasing N showing a tendency toward a Mott-Hubbard insulator. This is caused by the off-diagonal element of the self-energy, and this behavior is qualitatively different from that in the special case examined in the previous work. We also study the effects of the asymmetry in the two couplings. While the perfect transmission due to the Kondo resonance occurs for any odd N in the symmetric coupling, the conductance for odd N decreases with increasing N in the case of the asymmetric coupling. PACS numbers: 72.10.-d, 72.10.Bg, 73.40.-c Typeset using REVTEX 1

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of asymmetric quantum dot rings in electron transport through a quantum wire

The electronic conductance at zero temperature through a quantum wire with side-connected asymmetric quantum ring (as a scatter system) is theoretically studied using the non-interacting Hamiltonian Anderson tunneling method. In this paper we concentrate on the configuration of the quantum dot rings. We show that the asymmetric structure of QD-scatter system strongly influences the amplitude an...

متن کامل

Effect of asymmetric quantum dot rings in electron transport through a quantum wire

The electronic conductance at zero temperature through a quantum wire with side-connected asymmetric quantum ring (as a scatter system) is theoretically studied using the non-interacting Hamiltonian Anderson tunneling method. In this paper we concentrate on the configuration of the quantum dot rings. We show that the asymmetric structure of QD-scatter system strongly influences the amplitude an...

متن کامل

Calculation of Quasi-one-dimensional Interacting Electron Gas Using the Hartree-Fock Method

In this paper, the Hartree-Fock method has been formulated to investigate some of the ground state properties of quasi-one-dimensional interacting electron gas in the presence of the magnetic field. The bare coulomb interaction between electrons has been assumed. For this system, we have also computed some of its thermodynamic and magnetic properties such as the energy, pressure, incompressibil...

متن کامل

Particle acceleration and reconnection in the solar wind

An emerging paradigm for the dissipation of magnetic turbulence in the supersonic solar wind is via localized quasi2D small-scale magnetic island reconnection processes. An advection-diffusion transport equation for a nearly isotropic particle distribution describes particle transport and energization in a region of interacting magnetic islands [1; 2]. The dominant charged particle energization...

متن کامل

Quasi-Particle Description of Strongly Interacting Matter: Towards a Foundation

We confront our quasi-particle model for the equation of state of strongly interacting matter with recent first-principle QCD calculations. In particular, we test its applicability at finite baryon densities by comparing with Taylor expansion coefficients of the pressure for two quark flavours. We outline a chain of approximations starting from the Φ-functional approach to QCD which motivates t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008