Isometries, rigidity and universal covers

نویسندگان

  • Benson Farb
  • Shmuel Weinberger
چکیده

The goal of this paper is to describe all closed, aspherical Riemannian manifolds M whose universal covers M̃ have have a nontrivial amount of symmetry. By this we mean that Isom(M̃) is not discrete. By the well-known theorem of Myers-Steenrod [MS], this condition is equivalent to [Isom(M̃) : π1(M)] = ∞. Also note that if any cover of M has a nondiscrete isometry group, then so does its universal cover M̃ . Our description of such M is given in Theorem 1.2 below. The proof of this theorem uses methods from Lie theory, harmonic maps, large-scale geometry, and the homological theory of transformation groups. The condition that M̃ have nondiscrete isometry group appears in a wide variety of problems in geometry. Since Theorem 1.2 provides a taxonomy of such M , it can be used to reduce many general problems to verifications of specific examples. Actually, it is not always Theorem 1.2 which is applied directly, but the main subresults from its proof. After explaining in §1.1 the statement of Theorem 1.2, we give in §1.2 a number of such applications. These range from new characterizations of locally symmetric manifolds, to the classification of contractible manifolds covering both compact and finite volume manifolds, to a new proof of the Nadel-Frankel Theorem in complex geometry.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

1 Quasi - isometry rigidity for hyperbolic build - ings

Recall that the quasi-isometry group QI(X) of a metric space X is the set of equivalence classes of quasi-isometries f : X → X, where two quasiisometries f1, f2 are equivalent iff supx d(f1(x), f2(x)) <∞ (here we consider G as a metric space with a word metric). One approach to this question, which has been the most successful one, is to find an ‘optimal’ space X quasi-isometric to G and show t...

متن کامل

Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings

for all x ∈ X . Quasi-isometries occur naturally in the study of the geometry of discrete groups since the length spaces on which a given finitely generated group acts cocompactly and properly discontinuously by isometries are quasi-isometric to one another [Gro]. Quasi-isometries also play a crucial role in Mostow’s proof of his rigidity theorem: the theorem is proved by showing that equivaria...

متن کامل

The rigidity of embedded constant mean curvature surfaces

We study the rigidity of complete, embedded constant mean curvature surfaces in R 3 . Among other things, we prove that when such a surface has finite genus, then intrinsic isometries of the surface extend to isometries of R 3 or its isometry group contains an index two subgroup of isometries that extend. Mathematics Subject Classification: Primary 53A10, Secondary 49Q05, 53C42

متن کامل

A Boundary Version of Cartan-hadamard and Applications to Rigidity

The classical Cartan-Hadamard theorem asserts that a closed Riemannian manifold M with non-positive sectional curvature has universal cover M̃ diffeomorphic to R, and a byproduct of the proof is that ∂∞M̃n is homeomorphic to Sn−1. We prove analogues of these two results in the case where M has a non-empty totally geodesic boundary. More precisely, if M 1 ,M n 2 are two negatively curved Riemannia...

متن کامل

Rigidity and Stability for Isometry Groups in Hyperbolic 4-Space

Rigidity and Stability for Isometry Groups in Hyperbolic 4-Space by Youngju Kim Advisor: Professor Ara Basmajian It is known that a geometrically finite Kleinian group is quasiconformally stable. We prove that this quasiconformal stability cannot be generalized in 4-dimensional hyperbolic space. This is due to the presence of screw parabolic isometries in dimension 4. These isometries are topol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005