Stimulation of reverse transcriptase generated cDNAs with specific indels by template RNA structure: retrotransposon, dNTP balance, RT-reagent usage
نویسندگان
چکیده
RNA dependent DNA-polymerases, reverse transcriptases, are key enzymes for retroviruses and retroelements. Their fidelity, including indel generation, is significant for their use as reagents including for deep sequencing. Here, we report that certain RNA template structures and G-rich sequences, ahead of diverse reverse transcriptases can be strong stimulators for slippage at slippage-prone template motif sequence 3' of such 'slippage-stimulatory' structures. Where slippage is stimulated, the resulting products have one or more additional base(s) compared to the corresponding template motif. Such structures also inhibit slippage-mediated base omission which can be more frequent in the absence of a relevant stem-loop. Slippage directionality, base insertion and omission, is sensitive to the relative concentration ratio of dNTPs specified by the RNA template slippage-prone sequence and its 5' adjacent base. The retrotransposon-derived enzyme TGIRT exhibits more slippage in vitro than the retroviral enzymes tested including that from HIV. Structure-mediated slippage may be exhibited by other polymerases and enrich gene expression. A cassette from Drosophila retrotransposon Dme1_chrX_2630566, a candidate for utilizing slippage for its GagPol synthesis, exhibits strong slippage in vitro. Given the widespread occurrence and importance of retrotransposons, systematic studies to reveal the extent of their functional utilization of RT slippage are merited.
منابع مشابه
DNA synthesis fidelity by the reverse transcriptase of the yeast retrotransposon Ty1.
The fidelity of the yeast retrotransposon Ty1 reverse transcriptase (RT) was determined by an assay based on gel electrophoresis. Steady-state kinetics analyses of deoxyribonucleotide (dNTP) incorporation at a defined primer-template site indicate that Ty1 RT misincorporates dNTP at a frequency of 0.45 x 10(-5) for the A(t):A mispair in which dATP is misincorporated opposite a template A to 6.2...
متن کاملInteractions between HIV-1 Reverse Transcriptase and the Downstream Template Strand in Stable Complexes with Primer-Template
BACKGROUND Human immunodeficiency virus type 1 reverse transcriptase (HIV-1 RT) forms stable ternary complexes in which RT is bound tightly at fixed positions on the primer-template (P/T). We have probed downstream interactions between RT and the template strand in the complex containing the incoming dNTP (+1 dNTP*RT*P/T complex) and in the complex containing the pyrophosphate analog, foscarnet...
متن کاملMonoclonal antibody-mediated inhibition of HIV-1 reverse transcriptase polymerase activity. Interaction with a possible deoxynucleoside triphosphate binding domain.
A series of monoclonal antibodies against p51/p66 human immunodeficiency virus-1 (HIV-1) reverse transcriptase (RT) were prepared by immunizing mice with the native enzyme immobilized on nitrocellulose. One of these antibodies, designated 1E8, was found to inhibit both RNA-dependent and DNA-dependent polymerase activities of RT but had no effect on the RNase H activity of the enzyme. This inhib...
متن کاملNonnucleoside inhibitor binding affects the interactions of the fingers subdomain of human immunodeficiency virus type 1 reverse transcriptase with DNA.
Site-directed photoaffinity cross-linking experiments were performed by using human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) mutants with unique cysteine residues at several positions (i.e., positions 65, 67, 70, and 74) in the fingers subdomain of the p66 subunit. Since neither the introduction of the unique cysteine residues into the fingers nor the modification of the...
متن کاملHost SAMHD1 protein promotes HIV-1 recombination in macrophages.
Template switching can occur during the reverse transcription of HIV-1. Deoxynucleotide triphosphate (dNTP) concentrations have been biochemically shown to impact HIV-1 reverse transcriptase (RT)-mediated strand transfer. Lowering the dNTP concentrations promotes RT pausing and RNA template degradation by RNase H activity of the RT, subsequently leading to strand transfer. Terminally differenti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 45 شماره
صفحات -
تاریخ انتشار 2017