Probabilistic Methods for State Estimation in Robotics
نویسندگان
چکیده
The eld of Arti cial Intelligence (AI) is currently undergoing a transition. While in the eighties, rule-based and logical representations were the representation of choice in the majority of AI systems, in recent years various researchers have explored alternative representational frameworks, which emphasis on frameworks that enable systems to represent and handle uncertainty. Out of those, probabilistic methods (and speci cally Bayesian methods) have probably been analyzed most thoroughly and applied most successfully in a variety of problem domains.
منابع مشابه
Robust state estimation in power systems using pre-filtering measurement data
State estimation is the foundation of any control and decision making in power networks. The first requirement for a secure network is a precise and safe state estimator in order to make decisions based on accurate knowledge of the network status. This paper introduces a new estimator which is able to detect bad data with few calculations without need for repetitions and estimation residual cal...
متن کاملA Link Prediction Method Based on Learning Automata in Social Networks
Nowadays, online social networks are considered as one of the most important emerging phenomena of human societies. In these networks, prediction of link by relying on the knowledge existing of the interaction between network actors provides an estimation of the probability of creation of a new relationship in future. A wide range of applications can be found for link prediction such as electro...
متن کاملToward Natural Language Semantic Sensing in Dynamic State Spaces
One of the great challenges of robotics is effective humanrobot communication. It is quite challenging for autonomous robots to understand human natural language statements, as these must be mapped from a large highly open space of semantic constructs to precise grounded representations that robots can interpret. Probabilistic models and inference algorithms for natural language processing (NLP...
متن کاملProbabilistic Methods for Location Estimation in Wireless Networks
Probabilistic modeling techniques offer a unifying theoretical framework for solving the problems encountered when developing location-aware and location-sensitive applications in wireless radio networks. In this paper we demonstrate the usefulness of the probabilistic modelling framework in solving not only the actual location estimation (positioning) problem, but also many related problems in...
متن کاملApplying Point Estimation and Monte Carlo Simulation Methods in Solving Probabilistic Optimal Power Flow Considering Renewable Energy Uncertainties
The increasing penetration of renewable energy results in changing the traditional power system planning and operation tools. As the generated power by the renewable energy resources are probabilistically changed, the certain power system analysis tolls cannot be applied in this case. Probabilistic optimal power flow is one of the most useful tools regarding the power system analysis in presen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997