Eynard - Mehta Theorem , Schur Process

نویسندگان

  • Eric M. Rains
  • ERIC M. RAINS
چکیده

We give simple linear algebraic proofs of Eynard-Mehta theorem, Okoun-kov-Reshetikhin formula for the correlation kernel of the Schur process, and Pfaffian analogs of these results. We also discuss certain general properties of the spaces of all determinantal and Pfaffian processes on a given finite set.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The partition function of the two-matrix model as an isomonodromic tau-function

We consider the Itzykson-Zuber-Eynard-Mehta two-matrix model and prove that the partition function is an isomonodromic tau function in a sense that generalizes Jimbo-Miwa-Ueno’s [20]. In order to achieve the generalization we need to define a notion of tau-function for isomonodromic systems where the ad–regularity of the leading coefficient is not a necessary requirement.

متن کامل

A New Look at the Burnside–schur Theorem

The famous Burnside–Schur theorem states that every primitive finite permutation group containing a regular cyclic subgroup is either 2-transitive or isomorphic to a subgroup of a 1-dimensional affine group of prime degree. It is known that this theorem can be expressed as a statement on Schur rings over a finite cyclic group. Generalizing the latter, Schur rings are introduced over a finite co...

متن کامل

An Improved Julia-caratheodory Theorem for Schur-agler Mappings of the Unit Ball

We adapt Sarason’s proof of the Julia-Caratheodory theorem to the class of Schur-Agler mappings of the unit ball, obtaining a strengthened form of this theorem. In particular those quantities which appear in the classical theorem and depend only on the component of the mapping in the complex normal direction have K-limits (not just restricted K-limits) at the boundary. Let B denote the open uni...

متن کامل

Frobenius-Schur Indicator for Categories with Duality

We introduce the Frobenius–Schur indicator for categories with duality to give a category-theoretical understanding of various generalizations of the Frobenius–Schur theorem including that for semisimple quasi-Hopf algebras, weak Hopf C∗-algebras and association schemes. Our framework also clarifies a mechanism of how the “twisted” theory arises from the ordinary case. As a demonstration, we es...

متن کامل

Abel-schur Multipliers on Banach Spaces of Infinite Matrices

We consider a more general class than the class of Schur multipliers namely the Abel-Schur multipliers, which in turn coincide with the bounded linear operators on `2 preserving the diagonals. We extend to the matrix framework Theorem 2.4 (a) of a paper of Anderson, Clunie, and Pommerenke published in 1974, and as an application of this theorem we obtain a new proof of the necessity of an old t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006