Unitarity in One Dimensional Nonlinear Quantum Cellular Automata

نویسنده

  • David A. Meyer
چکیده

Unitarity of the global evolution is an extremely stringent condition on finite state models in discrete spacetime. Quantum cellular automata, in particular, are tightly constrained. In previous work we proved a simple No-go Theorem which precludes nontrivial homogeneous evolution for linear quantum cellular automata. Here we carefully define general quantum cellular automata in order to investigate the possibility that there be nontrivial homogeneous unitary evolution when the local rule is nonlinear. Since the unitary global transition amplitudes are constructed from the product of local transition amplitudes, infinite lattices require different treatment than periodic ones. We prove Unitarity Theorems for both cases, expressing the equivalence in 1+1 dimensions of global unitarity and certain sets of constraints on the local rule, and then show that these constraints can be solved to give a variety of multiparameter families of nonlinear quantum cellular automata. The Unitarity Theorems, together with a Surjectivity Theorem for the infinite case, also imply that unitarity is decidable for one dimensional cellular automata.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultra-Low Cost Full Adder Cell Using the nonlinear effect in Four-Input Quantum Dot Cellular Automata Majority Gate

In this article, a new approach for the efficient design of quantum-dot cellular automata (QCA) circuits is introduced. The main advantages of the proposed idea are the reduced number of QCA cells as well as increased speed, reduced power dissipation and improved cell area. In many cases, one needs to double the effect of a particular inter median signal. State-of-the-art designs utilize a kind...

متن کامل

Algebraic Characterizations of Unitary Linear Quantum Cellular Automata

We provide algebraic criteria for the unitarity of linear quantum cellular automata, i.e. one dimensional quantum cellular automata. We derive these both by direct combinatorial arguments, and by adding constraints into the model which do not change the quantum cellular automata’s computational power. The configurations we consider have finite but unbounded size.

متن کامل

Fault-tolerant adder design in quantum-dot cellular automata

Quantum-dot cellular automata (QCA) are an emerging technology and a possible alternative for faster speed, smaller size, and low power consumption than semiconductor transistor based technologies. Previously, adder designs based on conventional designs were examined for implementation with QCA technology. This paper utilizes the QCA characteristics to design a fault-tolerant adder that is more...

متن کامل

Novel efficient fault-tolerant full-adder for quantum-dot cellular automata

Quantum-dot cellular automata (QCA) are an emerging technology and a possible alternative for semiconductor transistor based technologies. A novel fault-tolerant QCA full-adder cell is proposed: This component is simple in structure and suitable for designing fault-tolerant QCA circuits. The redundant version of QCA full-adder cell is powerful in terms of implementing robust digital functions. ...

متن کامل

Fault-tolerant adder design in quantum-dot cellular automata

Quantum-dot cellular automata (QCA) are an emerging technology and a possible alternative for faster speed, smaller size, and low power consumption than semiconductor transistor based technologies. Previously, adder designs based on conventional designs were examined for implementation with QCA technology. This paper utilizes the QCA characteristics to design a fault-tolerant adder that is more...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996