pH-induced alterations in the fusogenic spike protein of Semliki Forest virus

نویسندگان

  • M Kielian
  • A Helenius
چکیده

The spike glycoproteins of Semliki Forest virus mediate membrane fusion between the viral envelope and cholesterol-containing target membranes under conditions of mildly acidic pH (pH less than 6.2). The fusion reaction is critical for the infectious cycle, catalyzing virus penetration from the acidic endosome compartment. To define the role of the viral spike glycoproteins in the fusion reaction, conformational changes in the spikes at acid pH were studied using protease digestion and binding assays to liposomes and nonionic detergent. A method was also developed to prepare fragments of both transmembrane subunit glycopolypeptides of the spike, E1 and E2, which lacked the hydrophobic anchor peptides. Unlike the intact spikes the fragments were monomeric and therefore useful for obtaining information on conformational changes in individual subunits. The results showed that both E1 and E2 undergo irreversible conformational changes at the pH of fusion, that the conformational change of E1 depends, in addition to acidic pH, on the presence of cholesterol, and that no major changes in the solubility properties of the spikes takes place. On the basis of these findings it was concluded that fusion involves both subunits of the spike and that E1 confers the stereo-specific sterol requirement. The results indicated, moreover, that acid-induced fusion of Semliki Forest virus differs in important respects from that of influenza virus, another well-defined model system for protein-mediated membrane fusion.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

fus-1, a pH shift mutant of Semliki Forest virus, acts by altering spike subunit interactions via a mutation in the E2 subunit.

Semliki Forest virus (SFV), an enveloped alphavirus, is a well-characterized paradigm for viruses that infect cells via endocytic uptake and low-pH-triggered fusion. The SFV spike protein is composed of a dimer of E1 and E2 transmembrane subunits, which dissociate upon exposure to low pH, liberating E2 and the fusogenic E1 subunit to undergo independent conformational changes. SFV fusion and in...

متن کامل

Effects of monovalent cations on Semliki Forest virus entry into BHK-21 cells.

Infection of mammalian cells with Semliki Forest virus requires the endocytosis of the virus, its delivery to prelysosomal endosomes, and fusion of the viral envelope with the endosome membrane. Previous studies have indicated that the low endosomal pH triggers a conformational change in the viral spike glycoproteins rendering them fusogenic. In this paper, we demonstrate an additional factor(s...

متن کامل

Semliki Forest virus induced cell-cell fusion at neutral extracellular pH.

Semliki Forest virus-induced cell-cell fusion from within was considered to exclusively occur at mildly acidic pH (less than 6.2). Data of this study show that such cell fusion can also be triggered by transient acidification of the cytoplasm of infected cells at an extracellular, neutral pH. Results were obtained by utilizing NH4Cl pulses combined with covalent modification of cell surface pro...

متن کامل

pH-Induced Alterations Spike Protein of Semliki in the Fusogenic Forest Virus

The spike glycoproteins of Semliki Forest virus mediate membrane fusion between the viral envelope and cholesterol-containing target membranes under conditions of mildly acidic pH (pH < 6.2). The fusion reaction is critical for the infectious cycle, catalyzing virus penetration from the acidic endosome compartment. To define the role of the viral spike glycoproteins in the fusion reaction, conf...

متن کامل

The dynamic envelope of a fusion class II virus. Prefusion stages of semliki forest virus revealed by electron cryomicroscopy.

Semliki Forest virus is among the prototypes for Class II virus fusion and targets the endosomal membrane. Fusion protein E1 and its envelope companion E2 are both anchored in the viral membrane and form an external shell with protruding spikes. In acid environments, mimicking the early endosomal milieu, surface epitopes in the virus rearrange along with exposure of the fusion loop. To visualiz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 101  شماره 

صفحات  -

تاریخ انتشار 1985