Infinite Dynamic Bayesian Networks
نویسندگان
چکیده
We present the infinite dynamic Bayesian network model (iDBN), a nonparametric, factored state-space model that generalizes dynamic Bayesian networks (DBNs). The iDBN can infer every aspect of a DBN: the number of hidden factors, the number of values each factor can take, and (arbitrarily complex) connections and conditionals between factors and observations. In this way, the iDBN generalizes other nonparametric state space models, which until now generally focused on binary hidden nodes and more restricted connection structures. We show how this new prior allows us to find interesting structure in benchmark tests and on two realworld datasets involving weather data and neural information flow networks.
منابع مشابه
A numerical approach for optimal control model of the convex semi-infinite programming
In this paper, convex semi-infinite programming is converted to an optimal control model of neural networks and the optimal control model is solved by iterative dynamic programming method. In final, numerical examples are provided for illustration of the purposed method.
متن کاملThe Infinite Latent Events Model
We present the Infinite Latent Events Model, a nonparametric hierarchical Bayesian distribution over infinite dimensional Dynamic Bayesian Networks with binary state representations and noisy-OR-like transitions. The distribution can be used to learn structure in discrete timeseries data by simultaneously inferring a set of latent events, which events fired at each timestep, and how those event...
متن کاملAn Introduction to Inference and Learning in Bayesian Networks
Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...
متن کاملLearning failure-free PRISM programs
First-order logic can be used to represent relations amongst objects. Probabilistic graphical models encode uncertainty over propositional data. Following the demand of combining the advantages of both representations, probabilistic logic programs provide the ability to encode uncertainty over relational data. PRISM is a probabilistic logic programming formalism based on the distribution semant...
متن کاملReasoning About Infinite Random Structures with Relational Bayesian Networks
Relational Bayesian networks extend standard Bayesian networks by integrating some of the expressive power of first-order logic into the Bayesian network paradigm. As in the case of the related technique of knowledge based model construction, so far, decidable semantics only have been provided for finite stochastic domains. In this paper we extend the semantics of relational Bayesian networks, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011