Optimal Neural Codes for Natural Stimuli
نویسندگان
چکیده
OPTIMAL NEURAL CODES FOR NATURAL STIMULI
منابع مشابه
Connecting Neural Codes with Behavior in the Auditory System of Drosophila
Brains are optimized for processing ethologically relevant sensory signals. However, few studies have characterized the neural coding mechanisms that underlie the transformation from natural sensory information to behavior. Here, we focus on acoustic communication in Drosophila melanogaster and use computational modeling to link natural courtship song, neuronal codes, and female behavioral resp...
متن کاملPopulation Codes Representing Musical Timbre for High-Level fMRI Categorization of Music Genres
We present experimental evidence in support of distributed neural codes for timbre that are implicated in discrimination of musical styles. We used functional magnetic resonance imaging (fMRI) in humans and multivariate pattern analysis (MVPA) to identify activation patterns that encode the perception of rich music audio stimuli from five different musical styles. We show that musical styles ca...
متن کاملSensitivity and Bias within the Binary Signal Detection Theory, Bsdt
Similar to classic Signal Detection Theory (SDT), recent optimal Binary Signal Detection Theory (BSDT) and based on it Neural Network Assembly Memory Model (NNAMM) can successfully reproduce Receiver Operating Characteristic (ROC) curves although BSDT/NNAMM parameters (intensity of cue and neuron threshold) and classic SDT parameters (perception distance and response bias) are essentially diffe...
متن کاملEfficient Neural Codes That Minimize Lp Reconstruction Error
The efficient coding hypothesis assumes that biological sensory systems use neural codes that are optimized to best possibly represent the stimuli that occur in their environment. Most common models use information-theoretic measures, whereas alternative formulations propose incorporating downstream decoding performance. Here we provide a systematic evaluation of different optimality criteria u...
متن کاملThe spatiotemporal frequency tuning of LGN receptive field facilitates neural discrimination of natural stimuli.
The efficient coding hypothesis suggests that the early visual system is optimized to represent stimuli in the natural environment. While it is believed that LGN processing removes the redundant information of natural scenes, it is not clear whether the early visual processing can selectively amplify important signals in natural stimuli to facilitate discrimination. In this study, we examined t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016