HRE1 and HRE2, two hypoxia-inducible ethylene response factors, affect anaerobic responses in Arabidopsis thaliana.
نویسندگان
چکیده
Plants often experience challenging hypoxic conditions imposed by soil waterlogging or complete flooding. In rice, Sub1A, a flooding-induced ethylene responsive factor (ERF) plays a crucial role in submergence tolerance. In this study, we examined two Arabidopsis Hypoxia Responsive ERF genes (HRE1 and HRE2), belonging to the same ERF group as Sub1A. Transgenic Arabidopsis plants, which over-expressed HRE1, showed an improved tolerance of anoxia, whereas a double-knockout mutant hre1hre2 was more susceptible than the wild type. HRE1 over-expressing plants showed an increased activity in the fermentative enzymes pyruvate decarboxylase and alcohol dehydrogenase together with increased ethanol production under hypoxia, but not in normoxia. Whole-genome microarray analyses suggested that an over-expression of HRE1, but not HRE2, increased the induction of most anaerobic genes under hypoxia. Real-time quantitative (q)PCR analyses confirmed a positive effect of HRE1 over-expression on several anaerobic genes, whereas the double-knockout mutant hre1hre2 showed a decreased expression in the same genes after 4 h of hypoxia. Single-knockout mutants did not show significant differences from the wild type. We found that the regulation of HRE1 and HRE2 by low oxygen relies on different mechanisms, since HRE1 requires protein synthesis to be induced while HRE2 does not. HRE2 is likely to be regulated post-transcriptionally by mRNA stabilization. We propose that HRE1 and HRE2 play a partially redundant role in low oxygen signalling in Arabidopsis thaliana, thus improving the tolerance of the plant to the stress by enhancing anaerobic gene expression and ethanolic fermentation.
منابع مشابه
The AP2/ERF transcription factor AtERF73/HRE1 modulates ethylene responses during hypoxia in Arabidopsis.
A number of APETALA2 (AP2)/ETHYLENE RESPONSE FACTOR (ERF) genes have been shown to function in abiotic and biotic stress responses, and these genes are often induced by multiple stresses. We report here the characterization of an AP2/ERF gene in Arabidopsis (Arabidopsis thaliana) that is specifically induced during hypoxia. We show that under normoxic conditions, the expression of AtERF73/HRE1 ...
متن کاملRedundant ERF-VII Transcription Factors Bind to an Evolutionarily Conserved cis-Motif to Regulate Hypoxia-Responsive Gene Expression in Arabidopsis.
The response of Arabidopsis thaliana to low-oxygen stress (hypoxia), such as during shoot submergence or root waterlogging, includes increasing the levels of ∼50 hypoxia-responsive gene transcripts, many of which encode enzymes associated with anaerobic metabolism. Upregulation of over half of these mRNAs involves stabilization of five group VII ethylene response factor (ERF-VII) transcription ...
متن کاملExpression of N-WASP is regulated by HiF1α through the hypoxia response element in the N-WASP promoter
Cancer cell migration and invasion involves temporal and spatial regulation of actin cytoskeleton reorganization, which is regulated by the WASP family of proteins such as N-WASP (Neural- Wiskott Aldrich Syndrome Protein). We have previously shown that expression of N-WASP was increased under hypoxic conditions. In order to characterize the regulation of N-WASP expression, we constructed an N-W...
متن کاملThe human urocortin 2 gene is regulated by hypoxia: identification of a hypoxia-responsive element in the 3'-flanking region.
Ucn2 (urocortin 2) has been shown to exert potent beneficial effects in the cardiovascular system, including inhibition of apoptosis, improvement of cardiomyocyte contractility and decrease of oxidative stress. The mechanisms that contribute to the regulation of hUcn2 (human Ucn2) expression in cardiovascular pathologies are not known. In the present study, we analysed the mechanism by which hy...
متن کاملFunctional Balancing of the Hypoxia Regulators RAP2.12 and HRA1 Takes Place in vivo in Arabidopsis thaliana Plants
Plants are known to respond to variations in cellular oxygen availability and distribution by quickly adapting the transcription rate of a number of genes, generally associated to improved energy usage pathways, oxygen homeostasis and protection from harmful products of anaerobic metabolism. In terrestrial plants, such coordinated gene expression program is promoted by a conserved subfamily of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Plant journal : for cell and molecular biology
دوره 62 2 شماره
صفحات -
تاریخ انتشار 2010