Spectral methods for the equations of classical density-functional theory: relaxation dynamics of microscopic films.
نویسندگان
چکیده
We propose a numerical scheme based on the Chebyshev pseudo-spectral collocation method for solving the integral and integro-differential equations of the density-functional theory and its dynamic extension. We demonstrate the exponential convergence of our scheme, which typically requires much fewer discretization points to achieve the same accuracy compared to conventional methods. This discretization scheme can also incorporate the asymptotic behavior of the density, which can be of interest in the investigation of open systems. Our scheme is complemented with a numerical continuation algorithm and an appropriate time stepping algorithm, thus constituting a complete tool for an efficient and accurate calculation of phase diagrams and dynamic phenomena. To illustrate the numerical methodology, we consider an argon-like fluid adsorbed on a Lennard-Jones planar wall. First, we obtain a set of phase diagrams corresponding to the equilibrium adsorption and compare our results obtained from different approximations to the hard sphere part of the free energy functional. Using principles from the theory of sub-critical dynamic phase field models, we formulate the time-dependent equations which describe the evolution of the adsorbed film. Through dynamic considerations we interpret the phase diagrams in terms of their stability. Simulations of various wetting and drying scenarios allow us to rationalize the dynamic behavior of the system and its relation to the equilibrium properties of wetting and drying.
منابع مشابه
Influences of Small-Scale Effect and Boundary Conditions on the Free Vibration of Nano-Plates: A Molecular Dynamics Simulation
This paper addresses the influence of boundary conditions and small-scale effect on the free vibration of nano-plates using molecular dynamics (MD) and nonlocal elasticity theory. Based on the MD simulations, Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) is used to obtain fundamental frequencies of single layered graphene sheets (SLGSs) which modeled in this paper as the mo...
متن کاملDensity and Polarization Profiles of Dipolar Hard Ellipsoids Confined between Hard Walls: A Density Functional Theory Approach
The density and polarization profiles of the dipolar hard ellipsoids confined between hard walls are studied using the density functional theory (DFT). The Hyper-Netted Chain (HNC) approximation is used to write excess grand potential of the system with respect to the bulk value. The number density is expanded up to zero and first order in polarization to find the results. For the zero order in...
متن کاملمقایسه نتایج حل ترموالاستیک نیمفضا میان
In this paper, transfinite element method is used to analyze the two dimensional thermoelasticity problems. A comparison is made between the thermoelastic analysis results of the classical theory and theories with one or two relaxation times (i.e. L-S and G-L theories), for the half space problem. Governing equations are transformed to Laplace domain and then, node variables are calculated by t...
متن کاملSize effects and conductivity of ultrathin Cu films
We propose a model for the description of the transport properties of metallic films on a large scale of slab thickness. This model is based on solving the linearized Boltzmann equation in relaxation-time approximation using ab initio calculations within the framework of the density functional theory. The expression for the relaxation time is derived from the microscopic treatment of the scatte...
متن کاملHydrogen Abstraction Reaction of Hydroxyl Radical with 1,1-Dibromoethane and 1,2-Dibromoethane Studied by Using Semi-Classical Transition State Theory
The hydrogen abstraction reaction by OH radical from CH2BrCH2Br (R1) and CH₃CHBr2 (R2) is investigated theoretically by semi-classical transition state theory. The stationary points for both reactions are located by using ωB97X-D and KMLYP density functional methods along with cc-pVTZ basis. Single-point energy calculations are performed at the QCISD(T) and CCSD(T) levels of theory with differe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of chemical physics
دوره 136 12 شماره
صفحات -
تاریخ انتشار 2012