The Effect of Purified Human Bone Marrow-Derived Mesenchymal Stem Cells on Rotator Cuff Tendon Healing in an Athymic Rat.

نویسندگان

  • Ryan M Degen
  • Andrew Carbone
  • Camila Carballo
  • Jianchun Zong
  • Tony Chen
  • Amir Lebaschi
  • Liang Ying
  • Xiang-Hua Deng
  • Scott A Rodeo
چکیده

PURPOSE To evaluate the ability of purified human bone marrow-derived mesenchymal stem cells (MSCs) to augment healing of an acute small- to medium-sized rotator cuff repair in a small-animal model, evaluating the structure and composition of the healing tendon-bone interface with histologic and biomechanical analyses. METHODS Fifty-two athymic rats underwent unilateral detachment and transosseous repair of the supraspinatus tendon augmented with either fibrin glue (control group) or fibrin glue with 106 human MSCs (experimental group) applied at the repair site. Flow cytometry verified the stem cell phenotype of the cells as CD73+, CD90+, CD105+, CD14-, CD34-, and CD45-. Rats were killed at 2 and 4 weeks, with 10 from each group used for biomechanical testing and 3 for histologic analysis. RESULTS Safranin O staining identified increased fibrocartilage formation at the repair site at 2 weeks in the human MSC group (18.6% ± 2.9% vs 9.1% ± 1.6%, P = .026). Picrosirius staining identified decreased energy (36.88 ± 4.99 J vs 54.97 ± 8.33 J, P = .04) and increased coherence in the human MSC group (26.96% ± 15.32% vs 14.53% ± 4.10%, P = .05), indicating improved collagen orientation. Biomechanical testing showed a significant increase in failure load (11.5 ± 2.4 N vs 8.5 ± 2.4 N, P = .002) and stiffness (7.1 ± 1.2 N/mm vs 5.7 ± 2.1 N/mm, P < .001) in the experimental group compared with the control group at 2 weeks. These effects dissipated by 4 weeks, with no significant differences in fibrocartilage formation (35% ± 5.0% vs 26.6% ± 0.6%, P = .172) or biomechanical load to failure (24.6 ± 7.1 N vs 21.5 ± 4.1 N, P = .361) or stiffness (13.5 ± 3.1 N/mm vs 16.1 ± 5.6 N/mm, P = .384). All failures occurred at the bone-tendon interface. CONCLUSIONS Rotator cuff repair augmentation with purified human MSCs improved early histologic appearance and biomechanical strength of the repair at 2 weeks, although the effects dissipated by 4 weeks with no significant differences between groups. CLINICAL RELEVANCE Human MSCs may improve early rotator cuff healing during the first 2 weeks after repair.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Purified Multi-potent Human Bone-marrow Derived Mesenchymal Stem Cells on Rotator Cuff Tendon Healing in an Athymic Rat

This open-access article is published and distributed under the Creative Commons Attribution NonCommercial No Derivatives License (http://creativecommons.org/licenses/by-nc-nd/3.0/), which permits the noncommercial use, distribution, and reproduction of the article in any medium, provided the original author and source are credited. You may not alter, transform, or build upon this article witho...

متن کامل

The effect of aquatic activity and alogenic bone marrow derived mesenchymal stem cells fortified with Platelet-Rich Plasma in treatment of Achilles tendon in rat

The aim of this study was to the effect of aquatic activity and alogenic bone marrow derived mesenchymal stem cells fortified with Platelet-Rich Plasma in treatment of Achilles tendon in rat.  74 Sprague-Dawley rats were selected and tendon injury was formed in 69 of them. Subsequently, these rats were randomly divided into 8 groups and 5 rats which were without any injuries were chosen as the ...

متن کامل

Use of Undifferentiated Cultured Bone Marrow-Derived Mesenchymal Stem Cells for DDF Tendon Injuries Repair in Rabbits: A Quantitative and Qualitative Histopathological Study

Objective- To investigate the effect of intratendinous injection of bMSCs on the rate and extent of tendon healing after primary repair in a rabbit model. Design- Experimental study. Animals- Twenty seven skeletally mature New Zealand white rabbits weighing 1.8- 2.5 kg were used. Twenty rabbits were used as the experimental animals, and seven others were used as a source of bone marrow-derived ...

متن کامل

Bone Marrow-Derived Mesenchymal Cells Transduced with Scleraxis Improve Rotator Cuff Healing in a Rat Model

INTRODUCTION: Rotator cuff repair surgery depends on tendon-bone healing that results in scar formation which is weaker than normal tissue(1). The formation of scar tissue makes repairs prone to failure. Biologic therapies may be able to improve healing by limiting the amount of scar formation and promoting formation of the normal fibrocartilagenous transition zone. Previous work in our laborat...

متن کامل

Bone marrow-derived mesenchymal stem cells transduced with scleraxis improve rotator cuff healing in a rat model.

BACKGROUND Rotator cuffs heal through a scar tissue interface after repair that makes them prone to failure. Scleraxis (Scx) is a basic helix-loop-helix transcription factor that is thought to direct tendon development during embryogenesis. The purpose of this study was to determine if the application of mesenchymal stem cells (MSCs) transduced with adenoviral-mediated scleraxis (Ad-Scx) could ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Arthroscopy : the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association

دوره 32 12  شماره 

صفحات  -

تاریخ انتشار 2016