Identifiability of Linear Compartment Models: the Singular Locus
نویسندگان
چکیده
This work addresses the problem of identifiability, that is, the question of whether parameters can be recovered from data, for linear compartment models. Using standard differential algebra techniques, the question of whether a given model is generically locally identifiable is equivalent to asking whether the Jacobian matrix of a certain coefficient map, arising from input-output equations, is generically full rank. We give a formula for these coefficient maps in terms of acyclic subgraphs of the model’s underlying directed graph. As an application, we prove that two families of linear compartment models, cycle and mammillary (star) models with input and output in a single compartment, are identifiable, by determining the defining equation for the locus of non-identifiable parameter values. We also state a conjecture for the corresponding equation for a third family: catenary (path) models. These singular-locus equations, we show, give information on which submodels are identifiable. Finally, we introduce the identifiability degree, which is the number of parameter values that match generic input-output data. This degree was previously computed for mammillary and catenary models, and here we determine this degree for cycle models. Our work helps shed light on the question of which linear compartment models are identifiable.
منابع مشابه
Identifiability Results for Several Classes of Linear Compartment Models.
Identifiability concerns finding which unknown parameters of a model can be estimated, uniquely or otherwise, from given input-output data. If some subset of the parameters of a model cannot be determined given input-output data, then we say the model is unidentifiable. In this work, we study linear compartment models, which are a class of biological models commonly used in pharmacokinetics, ph...
متن کاملChange Point Estimation of the Stationary State in Auto Regressive Moving Average Models, Using Maximum Likelihood Estimation and Singular Value Decomposition-based Filtering
In this paper, for the first time, the subject of change point estimation has been utilized in the stationary state of auto regressive moving average (ARMA) (1, 1). In the monitoring phase, in case the features of the question pursue a time series, i.e., ARMA(1,1), on the basis of the maximum likelihood technique, an approach will be developed for the estimation of the stationary state’s change...
متن کاملIdentifiability of Dynamic Stochastic General Equilibrium Models with Covariance Restrictions
This article is concerned with identification problem of parameters of Dynamic Stochastic General Equilibrium Models with emphasis on structural constraints, so that the number of observable variables is equal to the number of exogenous variables. We derived a set of identifiability conditions and suggested a procedure for a thorough analysis of identification at each point in the parameters sp...
متن کاملIdentifiability Issues for Parameter - Varying Andmultidimensional Linear Systems
This paper considers the identiiability of state space models for a system that is expressed as a linear fractional transformation (LFT): a constant matrix (containing identiied parameters) in feedback with a nite-dimensional, block-diagonal (\structured") linear operator. This model structure can represent linear time-invariant, linear parameter-varying, uncertain, and multidimensional systems...
متن کاملIdentifiability for a Class of Discretized Linear Partial Differential Algebraic Equations
This paper presents the use of an iteration method to solve the identifiability problem for a class of discretized linear partial differential algebraic equations. This technique consists in replacing the partial derivatives in the PDAE by differences and analyzing the difference algebraic equations obtained. For that, the theory of discrete singular systems, which involves Drazin inverse matri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017